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LESLIE EDWIN MCKENZIE, JR. An Algebraic Lang',,age for Query and Update of Tem-
poral Databases (Under the direction of RICHARD SNODGRASS.)

Abstract

Although time is a property of events and objects in the real world, conventional relational
database management systems (RDBMS's) can't model the evolution of either the objects
being modeled or the database itself. Relational databases can be viewed as snapshot
d--databases in that they record only the current database state, which represents the state
of the enterprise being modeled at some particular time. We extend the relational algebra
to support two orthogonal aspects of time: valid time, which concerns the modeling of
time-varying reality, and tansaction time, which concerns the recording of information in
databases. In so doing, we define an algebraic language for query and update of temporal
databases.

The relational algebra is first extended to support valid time. Historical versions
of itne relational operators (i.e., union, difference, cartesian product, selection, projec-
tion, intersection, 0-join, natural join, and quotient) are defined and three new operators
(i.e., historical derivation, non-uniqum aggregation, and unique aggregation) are introduced.
Both the relational algebra and this new historical algebra are then encapsulated within a
language of commands to support transaction time. The language's semantics is formal-
ized using denotational semantics. Rollback operators are added to the algebras to allow
relations to be rolled back in time. The language accommodates scheme and contents evo-
lution, handles single-command and m ultiple-command transactions, and supports queries
on valid time. The language is shown to have the expressive power of the temporal query
language TQuel. (er2) 6-

The language supports both unniaterialized and materialized views and accommo-
dates a spectrum of view maintenance strategies, including incremental, recomputed, and
immediate view materialization. Incremea.tal versions of the snapshot and historical opera-
tors are defined to support incremental view materialization. A prototype query processor
was built for TQuel to study incremental view materialization in temporal databases. Prob-
lems that arise when materialized views are maintained incrementally are discussed, and
solutions to those problems are proposed.

Criteria for evaluating temporal algebras are presented. Incompatibilities among the
criteria, are identified aad a maximal set of compatible evaluation criteria is proposed. Our
language and other previously proposed temporal extensions of the relational algebra are
evaluated against these criteria.
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Chapter 1

Introduction

Time is a property of both events and objects in the real world. Events occur at specific
points in time; objects and the relationships among objects exist over time. The ability to
model this temporal aspect of real-world phenomena is essential to many computer system
applications (e.g., econometrics, banking, inventory control, medical records, airline reser-
vations, personnel records). Although techniques for encoding time-varying information in
conventional databases have been developed in many application areas, these techniques
are necessarily ad hoc and application-specific. They are not supported by a formal data
model.

Conventional database management systems (DBMS's), in general, provide no direct
support for time. This lack of support for time limits the effectiveness of conventional
databases as accurate models of reality for the following three reasons.

* Conventional databases don't model time-varying aspects of real-world phenomena.
They record the state of the enterprise being modeled at some particul3r time, but
not the evolution of the enterprise over time. Hence, DBMS's support only queries
that can be answered on a single recorded state of the enterprise; they don't support
queries that require knowledge of the enterprise's history. They also don't allow either
retroactive changes or postactive changes (i.e., changes that will occur in the future)
[Snodgrass & Ahn 1985] to the enterprise to be recorded in the database.

a A database itself changes state when it is updated. In conventional DBMS's, however,
out-of-date information is discarded when a database is updated; past database states

aren't retained for future reference. Hence, DBMS's allow queries to be evaluated
only on the current database state; they don't allow the database to be rolled back
in time for query evaluation on a past database state.

a Conventional DBMS's don't distinguish between the state of the database and the
state of the enterprise being modeled. DBMS's record only the current database state,
which is assumed to represent the current state of the enterprise being modeled. The
current database state, however, may not be, and often will not be, consistent with tht
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current state of the enterprise being modeled, simply because of delays and errors In
recording changes to the enterprise's state. DBMS's provide no facilities for recording
retroactively these periods of inconsistency.

EXAMPLE. Consider a simple course enrollment database at a university. Assume that
Phil, on September 1, enrolls in a mathematics course effective on September 2 but his
eiirollment in this course is not recorded in the database until September 3. Hence, on
September 2 the database is inconsistent with the enrollment in this course, and queries on
the database on that day may produce erroneous results. Once the database is updated on
September 4, the inconsistency is resolved. The database, however, contains no record of
either Phil's enrollment in this mathematics course before September 4 or the inconsistency
that existed on September 3. Furthermore, the database state before this latest change no
longer exists. Because queries are always evaluated on the current database state, which
is assumed to represent the current state of the enterprise being modeled, neither queries
concerning Phil's enrollment before September 4 nor queries on a database state before
September 4 are alluwed. The query "What are the courses in which Phil is enrolled?" can
be answered, but the query "When did Phil enroll in Math?" can't be answered because
Phil's enrollment history is not, stored in the database. 0

The need for direct database support for time has received increasing attention re-
cently. Over the past decade researchers in disciplines as varied as artificial intelligence,
logic, natural language processing, distributed processing, and database systems have stud-
ied the role that time plays in information processing. Bibliographies [Bolour et al. 1982,

McKenzie 1986, Stain & Snodgrass 1988] shot, that the number of works relating time to
information processing has increased exponentially during the last few years. One area

of continuing research interest is the development of a temporal data model capable of
supporting the temporal aspects of both real-world phenomena and the databases that
model these phenomena. The primary focus of research in this area bas been extending
the relational data model [Codd 1970] to support time-varying information.

In this dissertation we add support for time to one component of the relational data
model: the relational algebra. The relational algebra is an important component of the
relational data model because it can serve as the underlying evaluation mechanism for

queries in user-oriented, high-level query languages such as Quel and SQL (Ullman J982].
We extend the relational algebra to support the orthogonal aspects of time that concern

the modeling of time-varying reality and the recording of Information in a database. In
so doing, we define an algebraic language for query and update of temporal databases.
This language can be used as the underlying evaluation mechanism for queries in temporal

query languages such as TQuel [Snodgrass 1987]. The language also is a solution to the
time-related problems of conventional DBMS's described above. It can be used to record
the evolution of an enterprise over time for both retrieval and update, retain all past states
of the database, and distinguish between the state of the database and the state of the
enterprise being modeled. Hence, queries that require knowledge of the history of the

enterprise being modeled can be supported, and queries can be evaluated on either the
current or any past database state. Also, both retroactive and postactive changes to the
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enterprise can be recorded In the database, as can periods when the states of the datab#Ae

and enterprise are known to have been Inconsistent.

In the next section, we introduce some basic terminology. Then, we identify specific
problems In extending the relational algebra to handle time directly, describe )ur approach
for solving these problems, and discuss the scope of our research. We conclude this chapter
with an overview of the rest of the dissertation.

1.1 Terminology

A database is a set of structured data that models some aspect of a real-world enterprise
or phenomenon (e.g., a company's information about its employees). A database's scheme
describes the database's structure; the database's contents must adhere to that structure
[Date 1976, Ullman 1982]. A database management system (DMBS) is the system used
by persons to access and manipulate the data stored in a database. Most DBMS's are
based on either the relational, network, or hierarchicaJ data model [Ullman 19821. In this
dissertation, we consider only the relational data model.

1.1.1 Conceptual Models of Time

Two basic conceptual time models have been proposed: the continuous model, in which
time is viewed as being isomorphic to the real numbers, and the discrete model, in which
time is viewed as being isomorphic to the natural numbers (or a discrete subset of the real
numbers) (Clifford & Tansel 1985]. In the continuous model, each real number corresponds
to a "point" in time, whereas in the discrete model, each natural number corresponds to a
non-decomposable unit of time having an arbitrary duration. Although the two time models
represent time differently, they share one important property; they both require that time
be ordered linearly. Hence, for two non-equal times, t, and t2 , either t, is "before" t2 or t2

is "before" t, [Anderson 1982, Clifford & Tansel 1985].

"Instant," [Gadia 1986] "moment,"[Allen & Hayes 1985] "time quantum," [Anderson
19821 and "time unit" [Navathe & Ahmed 1986, Tansel 1986] are just some of the terms
used in the literature to describe a non-decomposable unit of time in the discrete model.
To avoid confusion between a point in the continuous model and a non-decomposable unit
of time in the discrete model, we refer to a non-decomposable unit of time in the discrete

model as a chronon [Ariav 1986] and define an intervoi to be a set of consecutive chronons.
Although the duration of each chronon in a set of times need not be the same, the duration
of a chronon is usually fixed by the granularity of the measure of time being used (e.g., day,
week, hour, second). A chronon typically is denoted by an integer, corresponding to a single
granularity, but may also be denoted by a sequence of integers, corresponding to a nested
granularity. For example, if we assume a granularity of a day relative to January 1, 1980,
then the integer 1901 denotes March 15, 1985. If, however we assume a nested granularity
of (year, month, day), then the sequence (6, 3, 15) denotes Mearch 15, 1985.
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We use the discrete model in this dissertation, Several practical arguments are given
In the literatute that support our preference for the discrete model over the continuous
model. First, measures of time are inherently imprecise [Anderson 1982, Clifford & Tansel
1985]. Clocking instruments invariably report the occurrence of events in terms of chronons,
not time "points." Hence, events, even so.called "instantaneous" events, can at best be
measured as having occurred during a chronon. Secondly, must natural language references
to time are compatible with the discrete time model. For example, when we say that an
evcnt occurred at 4:30 p.m., we usually don't mean that the event occurred at the "point"
in time ass-,iated with 4:30 p.m., but at some time in the chronon (minute) associated
with 4:30 p.m. [Arerson 1982]. Thir-Ily, the concepts of chronon and interval allow us
to model naturally evaits that are no'. instantaneous, but have duration (Anderson 1982].
Finally, any implementation of a data model with a temporal dimension will of necessity
have to have some discrete encoding for time [Snodgrass 1987].

1.1.2 Taxonomy of Time in Databases

There are three orthogonal aspects of time that a relational database management system
(RDBMS) needs to support: valid time, transaction time, and user-defined time (Snodgrass
& Ahn 1985, Snodgrass & Ahn 1986]. Valid time concerns modeling time-varying reality.
The valid time of, say, an event is the clock time when the event occurred in the real world,
independent of the recording of that event in some database. Other terms found in the
literature that have a similar meaning include intrinsic time (Bubenko 1977], effective time
(Ben-Zvi 1982], and logical time [Dadam et al. 1984, Lum et al. 1984]. Thanraction time,
on the other hand, concerns the storage of information in the database. The transaction
time of an event is the transaction number (an integer) of the transaction that stored the
information about the event in the database. Other terms found in the literature that
have a similar meaniug include extrinsic time (Bubenko 1977], registration time [Ben-Zvi
19821, and physical time [Dadam et al. 1984, Lurn et al. 1984]. Uler-defined time is an
uninterpreted domain for which the RDBMS supports the operations of input, output, and
perhaps comparison. As its name implies, the semantics of user-defined time is provided by
the user or application program. These three aspects of time are orthogonal in the support
required of the RDBMS. User-defined time is oupported by the relational algebra, in that
it is simply another domain, such as integer or chcaracter string, provided by the RDBMS
[Bontempo 1983, Overmyer & Stonebraker 1982, Tandem 1983]; valid time and transaction
time, however, are not supported.

Valid time, unlike transaction time, is a multifaceted aspect of time. Different times
may be used in defining the existence of a single object or relationship (e.g., the time a
student completes degree requirements and the time of the student's graduation ceremony
may both be used in specifying the student's graduation from college). Also, the properties
of an object or relationship all need not change at the same time (e.g., an employee's
promotion may, but need not, be accompanied by a change in salary or address). We
conpider a single, but arbitrary, concept of valid time.

Relations may be classified, depending on their support for valid time and transaction



Figure 1.1: Snapshot Relation

time, as either snapshot, rollback, historical, or temporal relations [Snodgrass & Ahn 1985,
Snodgrass & Ahn 19861. Snapshot relations support neither valid time nor transaction time.
They model an enterprise at one particular point in time. As a snapshot relation is changed
to reflect changes in the enterprise being modeled, past states of thte relation, representing
past states of the enterprise, are discarded. A snapshot relation consists of a set of tuple.
with the same set of attributes, and Is usually represented as a two-dimensional table with
attributes as columns and tuples as rows, as shown in Figure 1.1. Note that snapshot
relations are exactly those relations supported by the relational algebra. Hence, for clarity,
we will refer to the relational algebra hereafter as the snapshot algebra, Rollback relations
support transaction time but do not support valid time. They may be represented as a
sequence of snapshot states indexed by transaction time, as shown in Figure 1.2. (Here, the
last transaction deleted one tuple and appended another.) Because they record the history
of database activity, rollback relations can be rolled back to one of their past snapshot
states for querying, hence their name.

Historical relations support valid time but do not support transaction time. They
model the history, as it is best known, of an enterprise. When a historical relation is
changed, however, its past state, like that of a snaprhot relation, is discarded. A historical
relation may be represented as a three-dimensional solid, as shown in Figure 1.3. Because
they record the history of the enterprise being modeled, historical relations support his-
torical queries. They do not, however, support rollback operations. Temporal relations
support both valid time and transaction time. They may be represented as a sequence of
historical states indexed by transaction time, as shown in Figure 1.4. Because they record
both the history of the enterprise being modeled and the history of database activities,
temporal relation~s support both historical queries and rollback operations.

Data models that support these four classes of relations have several important prop er-
ties. First, a relation's scheme can no longer be defined in terms of the relation's attributes
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Figure 1.2: Rollback Relation

Fo R

Figure 1.3: H-[ictorical Relation
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Figure 1.4: Temporal Relation

alone; it must also include the relation's class (i.e., snapshot, rollback, historical, or tempo.
ral). Second, rollback and temporal relations, unlike snapshot and historical relations, are
append-only relations. Information, once added to a rollback or temporal relation, cannot
be deleted; otherwise, rollback operations could not be supported. Third, rollback and
temporal relations must record the evolution of their schemes as well as their contents, as
both may change over time. Fourth, valid time and transaction time are orthogonal aspects
of time. A relation may support either valid time or transaction time without supporting
both. Also, the time when an enterprise changes (i.e., valid time) need not be, and usually
will not be, the same as the time when the database is updated (i.e., transaction time) to
reflect that change. Finally, the same measures of time need not be used for valid time
and for transaction time. For example, a temporal relation will have a variable granularity,
which changes with each update. for transaction time but could have a fixed granularity

(e.g., second) for valid time.

1.2 The Problem

A query in a RDBMS is a computation that derives a relation from one or more underlying
base relations or views, where a view is simply a relation defined, via an algebraic expres-
sion, by a function on other relations in the database (c.f., Chapter 6). A query system is
a formal system for expressing queries [Maler 19831. There are three principal query sys-
tems for the relational model: tuple predicate calculus, domain predicate calculus, and the
snapshot algebra [Ullman 1982]. These query systems were proposed by [Codd 1972] and
are equivalent in expressive power. The calculi are non-procedural; they specify what the
result of a query should be without specifying how it is to be derived. Hence, the calculi are
useful in defining high-level, non-procedural query languages for RDBMS's. The algebra,
however, is procedural; it specifies what the result of a query should be and the method
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to be used In its derivation, Hence, the algebra is useful in implementing query processors
for RDBMS's. Expressions in the snapshot algebra can be defined in terms of relations
and only five operators: union, set difference, cartesian product, projection, and selection
[Uilman 1982]. Because the algebra is simply a system for writing expressions that evaluate
to derived relations, it is also useful in implementing other aspects of RDBMS's, including
update operations, database views, and integrity constraints (Date 1986A].

The snapshot algebra supports only snapshot relations. Although a snapshot relation
is time-varying in that it changes over time due to the insertion, deletion, and modification
of tuples, no record of the evolution of either the relation or the enterprise that it models
is maintained. Hence, the relational data model cannot handle historical queries or queries
whose frame of reference is other than the present. If we assume that snapshot relations are
always maintained "up-to-date," then the relational data model can only answer questions
of the form "What do you know about the present state of an enterprise as of now?"
Questions of the form "What do (did) you know about the history of an enterprise as of
now (as of some time in the past)?" cannot be answered. The broader class of queries
represented by this later question can only be answered if both valid time and transaction
time are added to the algebra.

Over the past decade, no less than 10 proposals (Ben-Zvi 1982, Clifford & Croker
1987, Gadia 1988, Gadia & Yeung 1988, Jones et al. 1979, Lorentzos & Johnson 1987A,
Navathe & Ahmed 1986, Sadeghi 1987, Sarda 1988, Tansel 1986] for extending the snapshot
algebra to include one or more aspects of time have appeared in the literature. All but
two can be termed historical algebras because they address only the problem of adding
valid time to the snapshot algebra. Ben-Zvi addresses the problem of adding both valid
time and transaction time to the snapshot algebra (Ben-Zvi 1982]. He defines formally an
extension of the snapshot algebra that includes valid time and one aspect of transaction
time (contents evolution). He also describes an approach for handling scheme evolution.
He does not, however, define a unified approach for handling valid time and both contents
and scheme evolution; the retrieval and update semantics of his model account for valid
time and contents evolution, but not scheme evolution. Gadia and Yeung also address the
problem of adding both valid time and transaction time to the snapshot algebra [Gadia &
Yeung 1988]. They propose that transaction time be treated as one dimension of a multi-
dimensional time-stamp, whose other dimensions record various facets of valid time. They
do not, however, define update semantics for this model. A formally defined extension of
the snapshot algebra that includes valid time and both aspects of transaction time has yet
to be proposed.

Although several temporal extensions of the snapshot algebra have been proposed,
criteria for evaluating the relative merit of these extensions have been left largely unex-
plored. The focus of research has been definition of algebras that include some aspect
of time rather than identification of properties that these new algebras should have. A
comprehensive set of well-defined, objective criteria for evaluating temporal exteusions of
the snapshot algebra has yet to be defined. Without such a set of criteria, evaluation and
comparison of the proposed algebras is impossible.
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Implementation of a temporal extension of the snapshot algebra as the evaluation
mechanism for queries in a temporal database management system (TDBMS's) is auother
subject that has received only limited research attention. A formally defined algebra that
includes both valid time and transaction time and satisfies a maximal subset of evaluation
criteria, while of theoretical Importance, is likely to have little practical use in TDBMS's if
it cannot be implemented at reasonable cost. How best to implement a temporal extension
of the dnapshot algebra for query processing in a TDBMS is a question that has yet to be
answered.

1.3 The Approach

The basic goal of our research was extension of the snapshot algebra to support both valid
time and transaction time. Because valid time and transaction time are orthogonal, we
were able to deal with each of the two aspects of time in isolation. The research itself was
conducted in three phases. In the first phase, we extended the snapshot algebra to support
valid time by defining a historical algebra. We then encapsulated both the snapshot algebra
and this new historical algebra in a language of commands to handle both aspects of trans.
action time: scheme evolution and contents evolution. Finally, we extended the language to
accommodate views and defined an architecture for query processing in TDBMS's that ac-
commodates the incremental maintenance of materialized views. Incrementally maintained
matterialized views are important to our research because they may be used to implement
certain classes of recurring queries efficiently [Hanson 1987A, Roussopoulos 1987]. The re-
"sult of our research is a formally defined algebraic language for database query and update
that

* Includes valid time and both aspects (scheme evolution and contents evolution) of
transaction time;

* Supports snapshot, rollback, historical, and temporal relations;

9 Satisfies a maximal subset of evaluation criteria; and,

* Serves as the underlying evaluation mechanism for historical query processing in
TDBMS's.

We next describe the specific contributions each phase of our research made to this lan-
guage.

Our primary objective in extending the snapshot algebra to include valid time and
transaction time was to define an algebraic language for query and update of temporal
databases that satisfies a maximal subset of evaluation criteria. We identified 29 criteria
for evaluating such languages. The criteria are restricted to those properties that are well-
defined, have an objective basis for being evaluated, and are arguably beneficial. As all the
evaluation criteria are not compatible, we also defined a maximal subset of these criteria.
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We then considered this maximal aubset of evaluation criteria when extending the snapshot
algebra to support valid time. AlU design decisions were made so that the resulting algebra
would possess as many of the most desirable properties of historical algebras as possible.
Definition of the historical algebra thus satisfied our goal to extend the snapshot algebra to
include valid time, support historical relations, and satisfy a maximal subset of evaluation
criteria.

A relation is defined by its scheme and contents. Database transactions change one or
more relations by changing either their contents or both their schemes and their contents.
When snapshot and historical relations are changed, their old scheme and contents can be
discarded. When rollback and temporal relations are changed, however, their old scheme
and contents must be retained. Hence, the fundamental problem that must be solved in
extending the snapshot and historical algebras to include transaction time is how best to
model the evolution of a relation's scheme and contents so that past states of ro~lback and
temporal relations are accessible.

An algebra by definition is side-effect-free, but the essential aspect of a database
transaction is solely its side-effect of modifying the database. One awkward but perhaps
feasible solution would have been to add the database as a parameter to every operator
in the snapshot and historical algebras. We adopted a different strategy, leaving the basic
structure of the algebras intact, and instead encapsulating them in another structure of
commands that provide the needed side-effects. We first added a new algebraic operator
called rollback to both the snapshot and historical algebras to make past states of rollback
and temporal relations available in the algebras, respectively. Fortunately, the rollback
operation is side-effect-free, so it was easily incorporated into the algebras. We then defined
commands that modify a relation's scheme and contents. For completeness, we also defined
commands that modify a relation's class (i.e., snapshot, historical, rollback, or temporal).
We used denotational semantics to define the semantics of commands, due to its success in
formalizing operations involving side-effects, such as assignment, in programming languages
[Gordon 1979, Stoy 1977]. Hence, we extended the snapshot and historical algebras to
include transaction time by extending the algebras to include a rollback operator and
defining a language for database update, with the slightly extended algebras as significant
components. Definition of this language satisfied our goal to extend the snapshot algebra
to include both aspects of transaction time and to support rollback and temporal relations.

Our extension of the snapshot algebra to support valid and transaction time will be
useful as the underlying model for TDBMS's only if it can be implemented at reasonable
cost. Because several studies have already identified appropriate storage structures and
access strategies for rollback, historical, and temporal relations and because our approach
for adding valid time and transaction time to the snapshot algebra is compatible with
those storage structures and access strategies. we only considered the appropriateness of
our extension of the snapshot algebra as the evaluation mechanidm for queries in a TDBMS.

Queries in TDBMS's can be grouped into three broad classes- snapshot queries, roi-
back queries, and non-rollback, historical queries. Snapshot queries involve neither valid nor
transaction time; Ahn has shown that this class of queries can be supported in TDBMS's
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without performance penalty if appropriate storage structures are used [Ahn 1986A]. Roll-
back queries, which reference either rollback or temporal relations, are queries asked "as
of" some time in the past. Because the past states of rollback and temporal relations never
change, both the cost and the result of processing a rollback query are constant over time.
If a rollback query's execution frequency is sufficiently high, it is cost-effective to evaluate
the query once and cache the result for future reference. Otherwise, it is cost-effective to
simply re-evaluate the query each time it is asked. Historical queries are queries on the
current state of historical and temporal relations. Because the size of the current state
of historical and temporal relations is likely to increase monotonically over time, the cost
of evaluating a given historical query is also likely to increase monotonically over time.
Furthermore, as only the most recent historical data in the current state of a historical or
temporal relation is likely to change between accesses, there is likely to be an increasing
amount of redundant processing associated with each repeated evaluation of a historical
query. Application-specific factors such as the frequency of query evaluation, update pat-
terns, the cost of each evaluation, and the cost of alternate query processing techniques
determine whether re-evaluation of a recurring historical query each time it is asked is
cost-effective. Yet, there will be a subclass of recurring historical queries in many applica-
tions for which query re-evaluation each time a query is asked will have unacceptable cost.
Also, the size of this subclass of recurring historical queries will increase during the life of
a temporal database.

We propose that incrementally maintained materialized views be used to implement
recurring historical queries for which query re-evaluation has an unacceptable cost. Under
this proposal, the result of a recurring historical query would be cached as a materialized
view and changed incrementally to reflect updates to the query's underlying relations.
Cacheing the results of recurring queries as incrementally maintained materialized views
has been shown to be more efficient than query re-evaluation for evaluating recurring non-
temporal queries, and sometimes significantly so, if the execution frequency of the queries
is sufficiently high, the sizes of the queries' underlying relations are sufficiently large, and
the volatility of the queries' underlying relations, defined as the percentage of tuples that
change between accesses, is sufficiently low (Hanson 1987A, Horwitz 1986, Roussopoulos
1987]. Incremental view materialization will be applicable to an even larger subclass of
recurring historical queries, as the cost of evaluating a historical query is typically greater
than the cost of evaluating an analogous non-temporal query.

To support incremental view materialization in TDBMS's, we defined incremental
versions of the snapshot and historical algebras and defined an architecture for incremental
view materialization in which nodes in query plans correspond to operators in the incre-
mental algebras (c.f., Chapter 7). We surveyed various techniques developed for efficient
implementation of both incremental and non-incremental query processors in RDBMS's and
analyzed their applicability to our architecture for historical query processing in TDBMS's.
We considered only implementation issues, such as query optimization, concurrency control,

and recovery, that affect the performance of query processors significantly. We also identi-
fied techniques for efficient implementation of our architecture that have no counterpart in
non-temporal query processors. Finally, we implemented a prototype query processor for
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the temporil query language TQuel, in which views are updated incrementally, to show
that our architecture is sufficient to process standard historical queries in TQuel incre.
mentally. The extensive applicability of techniques for efficient implementation of query
processors in RDBMS's to our architecture and the results of the prototyping show that
our extension of the snapshot algebra can serve as the underlying evaluation mechanism
for historical query processing in TDBMS's.

In summary, the results of our research show that the snapshot algebra can be ex-
tended to support the incremental update of materialized views in temporal databases to
account for updates to their underlying relations.

1.4 Scope of Research

Languages for database query and update exist at no less than three levels of database
abstraction. At the user-interface level, calculus-based languages such as SQL are available
for expressing query and update operations. At the algebraic level, the snapshot algebra is
the formal, abstract language for expressing these same operationk. Finally, at the physical

level, query and update operations can be defined in terms of data structures and access
strategies.

To bound the scope of this research, we restricted our research to language definition
at the algebraic level only; we didn't consider language definition at either the user-interface
or physical level. Also, we restricted our research to the relational data model; we didn't
consider the addition of time to other data models (e.g., network, hierarchical) or to non-
relational DBMS's. We addressed only the problem of extending the snapshot algebra
to support valid time and transaction time. Hence, we studied the addition of time to

only one component of the relational data model. We did not consider the addition of
time to other components of the model. For example, we didn't consider temporal keys,
functional dependencies, or integrity constraints, because these issues, although important
to a temporal extension of the relational data model, are separate from the algebra itself.
We also didn't consider the many other issues that arise when one attempts to extend
a RDBMS to support time directly. For example, we did not consider temporal query
languages or the physical storage of temporal relations. Several studies on each of these
issues have already been published. Finally, we restricted our prototype query processor for
TQuel to the standard TQuel historical query without aggregates. Also, we didn't require
that the prototype be implemented efficiently. Our purpose in implementing the prototype
was to show that our architecture is sufficient to process TQuel queries incrementally,
not to evaluate the effect of various optimization techniques on the performance of an
implementation of our architecture.

1.5 Structure of the Dissertation

In this section we review the organization of the dissertation itself. We describe briefly the
contents of each chapter.
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This chapter describes the motivation, problem, approach. and scope of this research.
Also, basic terminology used in the dissertation is introduced. Chapter 2 reviews related
work in defining languages for query and update of temporal databases at the user-oriented
and physical levels.

Chapter 3 defines a historical algebra. Formal definitions are provided for a historical
relation, ten algebraic operators, and two historical aggregate functions.

Chapter 4 defines a technique for extending the snapshot algebra and our historical
algebra to support both aspects of transaction time, evolution of a database's scheme and
evolution of a database's contents. A language, whose primary constructs are commands
and expressions, is defined to handle transaction time. Commands specify changes to
a database while expressions occur within commands and denote a single snapshot or
historical state. Expressions are restricted to allowable expressions in the snapshot algebra
or our historical algebra, extended to included two new operators that support rollback
operations. The extensions are formalized using denotational semantics.

Chapter 5 shows that the algebraic language for query and update of temporal data-
bases defined in Chapters 3 and 4 has the expressive power of the temporal query language
TQuel. For each type of TQuel statement (i.e., retrieve, create, append, replace,
delete, and destroy), an equivalent algebraic expression is presented. Also, algebraic
expressions corresponding to retrieve statements containing aggregates, as well as the basic
retrieve statement without aggregates, are presented.

Chapter 6 extends the language defined in Chapter 4 to accommodate views and a
spectrum of view maintenance strategies. To support incremental view materialization,

incremental versions of both the snapshot algebra and the historical algebra, introduced
in Chapter 3, are defined, Operators are redefined as operations on sets of changes to
relations rather than as operations on relations themselves. These incremental versions of
the algebras are essential to the techniques for incremental view materialization presented
in Chapter 7. The incremental versions of the algebras are defined using techniques for in-
cremental evaluation of expressions in the snapshot algebra [Blakeley et al. 1986A, Hanson

1987A, Horwitz 1986].

Chapter 7 describes an architecture for query processing in TDBMS's that accom-
modates incremental maintenance of materialized historical views. In this architecture,
historical queries are represented as update networks in which the internal nodes imple-
ment incremental historical operators as defined in Chapter 6. Implementation issues,
including query optimization, processing strategies, concurrency control, and recovery, are
analyzed as they relate to the architecture. Also, a prototype incremental query processor
for TQuel, which shows that the architecture is sufficient to process standard historical
queries in TQuel incrementally, is described.

Chapter 8 is an evaluation of algebraic languages for query and update of temporal

databases. Ten proposals for extending the snapshot algebra to support either valid time
or transaction time are described in terms of the types of objects they support and the
operations on object instances they allow. Also, 29 criteria for evaluating these algebraic
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languages are presented. Incompatibilities among the criteria are identified and a maximal
subset of criteria is defined. The 10 proposals for extending the snapshot algebra to handle

one or more aspecta of time, along with the language defin-3d in the earlier chapters, are

evaluated against .he criteria; the language defined here comes closest to satisfying the

maximal subset of criteria.

Chapter 9 presents conclusions and discusses future work.

1.6 Notational Conventions

Throughout the dissertation, a fixed-width font is used for elements of syntactic categories
and a SMALLCAPS font is used for elements of semantic domains. Semantic functions appear

in boldface; all other functions appear in Italics with at least the first letter capitalized.
Variables in mathematical expressions appear in lower-case italics. Appendix A describes

the symbols used in the paper and identifies the page where each symbol is either defined

or first used. An index to the definitions of terms appears at the end of the paper.



Chapter 2

Previous Work

In this chapter we review briefly previous work relevant to the problem of adding time to the
relational data model and RDBMS's. First, we consider efforts to add an aspect of time to
RDBMS's, reviewing temporal query languages and extensions of the snapshot algebra that
support one or more aspects of time. Then, we consider efforts to resolve implementation

issues for TDBMS's, reviewing strategies foi storing and accessing temporal relations and
strategies for efficient query processing in TDBMS's. Because of the lack of research in
the later area, we also review strategies for efficient query processing in RDBMS's that are
applicable to TDBMS's.

2.1 Temporal Query Languages

Several temporal query languages have been defined. Clifford proposed that the intensional

logic IL., a typed, higher order lambda calculus with indexical semantics, be used to
express queries on historical databases [Clifford & Warren 1983]. The other temporal
query languages that have been proposed are derivatives of either Quel [Held et al. 1975],
the calculus-based query language for the INGIRES relational database management system

[Stonebraker et al. 1976], or SQL, the query language for the System R database system
[IBM 1981]. TQuel [Snodgrass 1987], HQUEL [Tansel & Arkun 1986], and HTQUEL
[Gadia & Valshnav 1985] are all extensions of Quel. Ben-Zvi's query language for his Time
Relational Model (TRM) [Ben-Zvi 1982], TOSQL (Ariav 1984, Ariav 19861, and TSQL
[Navathe & Ahmed 1987] are all derivatives of SQL. TQuel, TRM, and TOSQL support

both valid time and transaction time. The other languages support only valid time.

Although these temporal query languages have different constructs, most include new
constructs for specifying the same basic types of temporal operations. For example, most
of these languages provide a new construct, which we term temporal selection, to specify
a selection predicate for tuples that participate in a query based on their valid times.

Also, most provide a new construct, which we term temporal projection, to specify the
valid times of otetput tuples as a function of the valid times of their underlying tuples.

Finally, most provide temporal versions of the standard aggregates and some provide new
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temporal aggregates. To illustrate the types of temporal constructs found in temporal query
languages, we now review the language TQuel, emphasizing the new temporal constructs
i4 adds to the basic Quel constructs.

TQuel (Temporal QUEry Language) [Snodgrass 1987] is an extension of Quel that
handles both valid time and transaction time. TQuel is the only query language that
supports all four types of relations, snapshot, rollback, his*,,,rical, and temporal. Also,
because it is a superset of Quel, all legal Quel statements are valid TQuel statements. The
semantics of TQuel has been defined using tuple relational calculus.

Three new syntactic and semantic constructs are provided to support time. The valid
clause is the temporal analogue to Quel's target list. It contains two temporal expressions,
each consisting of tuple variables, temporal constants, and the temporal constructors begin
of, end of, overlap, and extend. These two expressions specify the end-points of the
interval of validity for output tuplies in the derived relation. The when clause is the temporal
analogue to Quel's where clause. It contains a temporal predicate consisting of temporal
expressions, the temporal predicate operators precede, overlap, and equal, and the logical
operators or, and, and not. (Note that overlap is overloaded; it may be either a temporal
constructor or a temporal predicate operator, with context differentiating the uses.) This
temporal predicate specifies the temporal selection criteria for input tuples. A third new
construct, the as of clause, is provided to handle transaction time. It contains either one
or two temporal expressions that specify the transaction time(s) for rolling back a rollback
or temporal relation in time. The retrieve statement is augmented with the valid, when,
and as of clauses while the append, delete, and replace statements are augmented with
the valid and when clauses. The create command is extended to specify the type of

relation being created.

A rich set of aggregates is also defined in TQuel. TQuel aggregates (Snodgrass et 1.
1987] are a superset of the Quel aggregates. Hence, each of Quel's six non-unique aggregatec
(i.e., count, any, sum, avg, main, and max) and three unique aggregates (i.e., countU, sumU,
and avgU) has a TQuel counterpart. The TQuel version of each of these aggregates performs
the same fundamental operation as its Quel counterpart, with one significant difference.
Because a historical relation represents the changing value of its attributes and aggregates
are computed from the entire relation, aggregates in TQuel return a distribution of values
over time. Hence, while in Quel an aggregate with no by-list returns a single value, in TQuel
the same aggregate returns a set of values, each assigned its valid times. When there is
a by-list, an aggregate in TQuel returns a distribution of aggregate values over time for
each value of the attributes in the by-list. There are also several other TQuel aggregates
that do not have Quel counterparts: standard deviation (stdev and stdevU), average time
increment (avgti), the variability of time spacing (varts), oldest value (first), newest
value (last), interval of validity with the earliest left-most end-point (earliest), and
interval of validity with the latest right-most end-point (latest). All TQuel aggregates
have been defined using tuple relational calculus.

Five qualifying clauses may be specified in a TQuel aggregate: the by and where
clauses allowed in Quel aggregates, when and as of clauses, and a new for clause, found
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only In aggregates. The for clause is used to specify an aggregation window function that,
along with the time granularity being used, determines an aggregation window for each
time t. Only tuples whose interval of validity overlaps the aggregation window for time t
participate in the computation of the aggregate's value at time t. Key words (e.g., each
instant, ever, each day, each year) are used in the for clause to define the length of
aggregation windows.

2.2 Algebras

Extending the snapshot algebra to include an aspect of time is another topic that has
received considerable research interest. Over the past decade, 10 algebras, each an extension
of the snapshot algebra that supports one or more aspects of time, have been proposed.
Algebras have been defined for LEGOL 2.0 (Jones et al. 1979], Ben-Zvi's Time Relational
Model (Ben-Zvi 1982], Clifford's Historical Relational Data Model (Clifford & Croker 19871,
Gadia's homogeneous and multihomogeneous models (Gadia 1986, Gadia 1988], Gadia'r
and Yeung's heterogeneous models [Gadia & Yeung 1988, Yeung 1986], and Navathe's
Temporal Relational Model [Navathe & Ahmed 1986]. Lorentzos, Johnson, Sadeghi, Sarda,
and Tansel also have defined algebras [Lorentzos & Johnson 1987A, Sadeghi 1987, Sarda
1988, Tansel 1986]. While all these algebras support valid time, only Ben-Zvi's algebra
supports transaction time.

The algebras differ both in the types of objects they define and in the kinds of op-
erations they provide. These differences are the result of choices to several basic design
decisions. For example, some of the algebras associate valid time with tuples while others
associate valid time with attributes. Also, some of the algebras retain the set-theoretic
semantics of the basic relational operators and introduce new operators to deal with the
temporal dimension of data while others extend the semantics of the relational operators to
deal with the temporal dimension of data directly. We provide a review of all 10 algebras
in Chapter 8.

2.3 Storage Structures and Access Strategies

While there has been considerable research into an appropriate query language and algebra
for a TDBMS based on a temporal extension of the relational model, there has been only
limited research into the implementation of such a TDBMS. One implementation issue,
however, that has received some research attention is the appropriate storage structures and
access strategies for temporal databases. Information, once added to a historical relation,
can be deleted, but only to correct errors. Information, once added to a rollback or temporal
relation, can never be deleted; otherwise, the rollback operation could not be supported.
Because of these properties, the volume of information that must be maintained for a
historical, rollback. or temporal version of a relation will be substantially greater than that
for a corresponding snapshot version of the relation. Hence, appropriate storage structures
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and access strategies are even more important implementation Issues -for TDBMS's than
for RDBMS's.

Ahn has proposed both storage structures and access strategies for temporal relations
[Ahn 1986A]. He proposed a temporally partitioned store for temporal relations in which
the current store holds the current version of all tuples in the relation and the history
store holds the past versions of all tuples. This temporally partitioned store allows differ-
ent storage formats and different storage media to be used for the different stores. Ahn
investigated the relative advantages and disadvantages of several different storage formats
for the history store, including reverse chaining, indexing, clustering, stacking, and cellular
chaining. He also introduced a new hashing technique, termed nonlinear hashing, to cluster
the past versions of a tuple in the history store. Finally, Ahn implemented a prototype of
a TDBMS to study tVe performance of various storage structures for temporal databases.
He showed the feasibility of adding a temporal dimension to RDBMS's without incurring a
performance penality for conventional non-temporal queries. He also showed that specific
storage structures cin be used to improve the performance of various types of temporal
queries.

Thirumalai and Krishna have proposed a three-level, rather than a two-level, storage
stucture for temporal relations (Thirumalal & Krishna 1988]. In their proposal, a current
store holds the tuples that are currently both active (i.e., have yet to be logically deleted)
and valid (i.e., valid time overlaps the present), a history store holds the tuples that are
active, but no longer valid, and a relic store holds the tuples that are both inactive and
no longer valid. Only the current store is needed to answer non-temporal queries, while
the history store is needed to answer historical queries and the relic store is needed to
answer rollback queries. They investigated organization of the history store as a grid file
[Nievergelt et al. 1984] to cluster tuples by both key and valid time.

Segev and Shoshani captured the semantics of valid time in historical relations through
the concept of time sequences [Segev & Shoshani 1987], A time sequence is an ordered
sequence in the time domain of values for a database entity (e.g., someone's employment
history). Rotem and Segev proposed multidimensional file partitioning as an appropriate
storage structure for time sequences [Rotem & Segev 1987]. They studied two alternatives
for multidimensional partitioning, termed symmetric and asymmetric partitioning, and
showed through simulation experiments that asymmetric partitioning has a performance
advantage in terms of disk accesses.

The storage structure for POSTGRES (Stonebraker 1987] supports rollback relations
using a temporally partitioned store similar to that of Ahn. The current version ef each
tuple is stored on magnetic disk while past versions of tuples are asynchronously moved to
an archival medium, perhaps a write-onlce-read-many (WORM) optical disk. An arbitrary
number of secondary indexes can be specified for the archived portion of a rollback relation
to support temporal queries and the indexes need not be the same as those for t4e magnetic
disk portion of the relation. Performance studies have indicated that the POSTGRES
storage structure is competitive with conventional storage structures.

Lum, et al. proposed a data structure for rollback relations in which the current
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version of tuples and the put versions of tuples are all maintalned on-line, but in separate
relations [Lum et al. 1984]. Stored with the current version of each tuple are a time-stamp
and a pointer to ,a linked list of the tuple's past versions. Past versions of the tuple are
stored In a separate relation, linked in reverse time order. To allow random access to tuples
and their histories, a current index tree is maintained for the current store and an history
index tree is maintained for the history store. These trees are conventional structures, such
as B-trees or B*-trees whose leaves are (index value, pointer) pairs.

The considerable research in appropriate data structures and access strategies for
persistent data structures also has application to temporal databases. Persistent data
structures, like rollback and temporal relations, maintain a reccrd of their evolution over
time resulting from the execution of insert and delete operations. Dobkin and Munro
proposed a persistent data structure for ordered lists [Dobkin & Munro 1980, Dobkin &
Munro 1985]. Their data struture records the evolution of an ordered list over time by
remembering the rank history of each list element. Queries concerning an element's rank
can be posed as of "now" or some time in the pazt. Overmars proposed methods for
handling the persistent list problem that improve on the algorithms of Dobkin and Munro
[Overmars 1981A, Overmars 1981B, Overmars 1983]. Chazelle and Cole both proposed

persistent data structures for a sorted set; Chazelle using canal trees and Cole using binary
search trees to record a set's evolution [Chazelle 1985, Cole 1986]. Queries concerning set
memnbership or an element's neighbors can be posed as of "now" or some time in the past.

Myers proposed a persistent data structure for both sorted sets and lists, either ordered or
unordered [M1yers 10841. His approach, which is called path copying elsewhere [Sarnak &
Tarjan 19861, is based on the representation of a set or list at time t as a height-balan~ced
tree (e.g., AVL tree). On update, nodes on the path from the tree's root to the point
of update are copied and theo linked to all subtrees not on the path to form a new tree.
Sarnalk and Tarjan propose a variation of path copying that requires an amortized space
cost of only 8(1) per update [Sarnak & Tarjan 1986].

2.4 Strategies for Efficient Query Processing

Strategies for efficient query processing in TDBMS's is an open research topic. Gadia
provided a computational sernimtics for his historical algebra to support its efficient im-
plementatinn (Gadia 1988] and Tansel provided algebraic tautologies for his new temporal
operators that caft be used in query optimization [Tinsel 1986]. Otherwise, implementation
issues related to the use of a historical algebra aa the evaluation mechanism for queries in
a TDBMS have yet to be explored.

Although there has been a lack of research in strategies for efficient query processing
in TDBMS's, many of the strategies for efficient query processing in RDBMS's are likely
to have an analogue in TDBMS's. For example, much of the substantial research in the
optinuzation cf single snapshot algebra expressions [Aho et al. 1979, Ceri & Gottlob 1985,
Freytag & Goodman 1986, Hall 1976, Seiinger et al. 1979, Smith & Chang 1975, Ullman
1982, Wong & Youssefi 1976] and multiple snapshot algebra expressions [Finkelstein 1982,
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Roussopoulos 1982A, Satoh et al. 1985, Sellis & Shapiro 1985] Is likely to i. 'e an analogue
for historical algebras. Also, recently developed strategies for maintaining materialized
database views appear directly applicable to the processing of recurring historical queries

in TDBMS's.

Derived relatiorn, which are defined as algebraic expressions involving other relations,
are either unnamed or named (Date 1986B]. Unnamed derived relations are simply the re-
suits of queries while named derived relations may be classified as either views [Date 1986C]
or snapshots (Adiba & Lindsay 1980]. Views and snapshots differ in that, from a user's
perspective, views change over time to reflect changes in their underlying relations, whereas
snapshots, once evaluated, are unaffected by subsequent changes in their underlying rela-
tions. Traditionally, query modification has been used to convert queries against a view
into queries against the view's underlying relations (Stonebcaker 1975]. Recently, however,
research has focused on strategies for maintaining materialized views, where the viewe are
incrementally updated to reflect changes in the views' underlying relations [Blakeley et al.
1986A, Horwitz & Teitelbaum 1986, Roussopoulos & Kang 1986A, Roussopoulos & Kang
1986B, Shmueli & Atai 1984, Shmuoli & Ital 1987]. Sufficient and necessary conditions for
detecting updates of base relations that cannot affect views have been identified (Blakeley
et al. 1986B] and an incremental version of the snapshot algebra has been defined [Blake-
ley et al. 1986A]. Also, several architectures for incremental view materialization have
been proposed [Horwitz 1985, Roussopoulos 1982A, Roussopoulos 1982B, Snodgrass 1982].
Hanson showed that, for at least some classes of queries against views, incremental view
materialization strategies have performance advantages over query modification strategies
[Hanson 1987A]. Also, recurring queries can be implemented as materialized views to re-
duce the amortized cost of their evaluations. Roussopoulos showed that incremental view
materialization is more efficient than query re-evaluation as an implementation strategy
for many types of recurring queries [Roussopoulos 1987].



Chapter 3

Supporting Valid Time: A
Historical Algebra

As discussed in Chapter 1, there are three orthogonal aspects of time that a DBMS should
support: valid time, transaction time, and user-defined time. Although the snapshot alge-
bra [Codd 19701 supports user-defined time, it supports neither valid time nor transaction
time. In this chapter we extend the snapshot algebra to handle valid time by defining a
historical algebra. We do not consider here any extension, of either the snapshot algebra
or our historical algebra, to support transaction time. In the next chapter we describe
an approach for adding transaction time to both the snapshot algebra and our historical
algebra. This approach also applies without change to most other historical algebras sup-
porting valid time. Because valid time and transaction time are orthogonal, they can be
studied in isolation.

Several benefits accrue from defining a historical algebra that extends the snapshot
algebra to support valid time. A historical algebra is essential to the formulation of a
historical data model because it defines formally the types of objects and the operations
on object instances allowed in the data model. The usefulness of a historical data model in
representing the time-varying aspect of real-world phenomena depends on the power and
expressiveness of its underlying historical algebra. Similarly, the algebra determines a data
model's support of calculus-based query languages. Also, implementation issues, such as
query optimization and physical storage strategies, can best be addressed in terms of the
algebra.

3.1 Approach

The snapshot algebra allows us to model reality only at a single time. We want to extend
the snapshot algebra to model reality over an interval rather than at a single time. To do
so, we redefine a relation, the only type of object allowed in the algebra, to include valid
time. We also redefine the algebraic operators, and introduce new operators, to handle this
new temporal dimension.
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To extend objects in the snapshot algebra to include valid time, we had to make three
basic design decisions.

" Is valid time associated with tuples (as additional implicit attributes) or with at-

tributes?

" How is valid time represented? Do time-stamps, which represent valid time, corre-

spond to chronons, intervals, or sets of chronons, not all of which are consecutive?

"* Are attributes required to be atomic- valued or are they allowed to be set-valued? If
set-valued attributes are allowed, then the first-normal-form property of the snapshot
algebra cannot be satisfied [Codd 1970].

We chose to

o Associate valid time with attributes rather than with tuples,

* Represent valid time as a set of (not necessarily consecutive) chronons, and

o Require that the value component of attributes be atomic-valued but allow the valid-
time component of attributes to be set-valued.

To extend operations in the snapshot algebra to handle valid time, we had to make
two subsequent design decisions.

* Is the set-theoretic semantics of the basic relational operators retai:aed and new op-
erators introduced to deal with the temporal dimension of the real-world phenomena
being modeled or is the semantics of the relational operators extended to account for
the temporal dimension directly? If the latter, then how do these operators compute
the valid time of attributes in resulting tuples?

* How does the algebra handle temporal selection (i.e., tuple selection based on valid
times), temporal projection (i.e., computation of new valid times for a tuple's at-
tributes from their current valid times), and temporal aggregation (i.e., computation
of a distribution of aggregate values over time); operations that ere unique to a
historical algebra?

We chose to

* Extend the semantics of the relational operators to account for the temporal dimen-
sion directly and redefine the operators formally to specify how each computes the
valid time of attributes in resulting tuples, and

o Introduce new operators to handle temporal selection, projection, and aggregation.
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Our choices for these five design decisions reflect our goal to define a historical algebra
that has as many of the most desirable properties of a historical algebra as possible. For
example, we wanted the historical algebra to be a straightforward extension of the snapshot

algebra so that relations and algebraic expressions in the snapshot algebra would have

equivalent counterparts in the historical algebra. Yet we also wanted the algebra to support

historical queries and adhere to the user-oriented model of historical relations as three-
dimensional objects, where the additional, third dimension is valid time [Ariav 1986, Ariav
& Clifford 1986, Clifford & Tansel 1985]. Hence, we did not restrict historical relations to
first-normal-form (i.e., we allow set-valued time-stamps), insist on time-stamping of entire
tuples, or require that time-stamps be atomic-valued because each of those restrictions
would have prevented the algebra from having other, more highly desirable properties. All
design decisions were made so that the resulting algebra would possess a maximal set of
desirable properties. In Chapter 8 we present a detailed discussion of desirable properties
of historical algebras as well as an evaluation of our algebra and the historical algebras
proposed by others, using the identified properties as evaluation criteria. We also review
our design decisions, considering these evaluation criteria.

Efficient direct implementation of the algebra was not one of our primary design
objectives. Rather, our goal was to define an algebra that preserves the associative, com-
mutative, and distributive properties of the snapshot algebra in order that optimization
strategies developed for the snapshot algebra can be applied in implementations of the his-
torical algebra. Our formulation of the algebraic operators would be inefficient if mapped
directly into an implementation. While we can envision more efficient implementations,
incorporating such efficiencies in the semantics would have made it much more complex.
Finally, we expect that new optimization strategies, unique to the historical algebra, also
will be used in its implementation. We discuss these issues further in Chapter 7.

In the following sections we define our historical algebra, presenting formal definitions
for a historical relation, six algebraic operators, and two historical aggregate functions.
We then show that all the operators perserve the value-equivalence property of historical
relation states, which we define in the next section. Finally, we conclude this chapter by
discussing briefly techniques that can be used to extend the algebra defined here to handle
periodicity, multi-dimensional time-stamps, and non-first-normal-form historical relations.

3.2 Historical Relation

We define a historical relation in terms of its scheme and the set of states that it may
assume. The relation's structure is defined by the scheme; its contents may be any one of
the allowable states.

As we saw in Chapter 1, the definition of a relation's scheme in terms of the relation's
class and attributes is sufficient, even if we allow databases to contain relations of all four
classes. Assume that we are given an arbitrary set of syntactic identifiers 2'D.Af.TTlef
and the e arbitrary, non-empty, finite or denumerable sets Vu, 1 :5 u < e. Let z be a
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function that maps each identifier I In the set ZD&MT7eR onto one of the sets Du,
1 _ u5 • e, or the special element UNSOUND.

z : TDeA 'I M -- {VI, Do, UNBOUND)

If z maps an identifier I onto a set *DV, we refer to I as an attribute name, or simply an
attribute and DPu as its value domain. Hence, the function z, which we refer to hereafter as
the relation signature, induces the set of attributes A = {I I z(I) 0 UNBOUND). A historical
relation's scheme is then simply the relation class HISTORICAL and a relation signature z.

We now define the set of states that a historical relation may assume, given a relation
signature z. Let T be the set of positive integers, where each element of T represents a
chronon. Assume that, if t, immediately precedes t2 in the linear ordering of 'T, then t,
represents the interval [Startof(t1 ), Startof(t2 )), where Startof is a function that maps a
chronon in the discrete model onto the "point" in the continuous model that corresponds to
the chronon's beginning. The granularity of time (e.g., nanosecond, month, year) associated
with 7T is arbitrary. Let P(T) be the power set of T An element of P('T) is then a set
of integers, each of which represents a chronon. Also, any group of consecutive integers
ati, ... , tn appearing in an element of P(T), together represent the interval [tI, t, + 1). If
we let P(7) be the time domain for each attribute in, A, we can define a historical tuple
ht as a function that maps each attribute in A onto an ordered pair from the attribute's
value and time domains.

ht :A - (VI+"+ D, P(T))

with the following restrictions:

9 V1, I E A, Value(ht(I)) E z(1) and

9 WI, I e A, Valid(ht(I)) # 0.

Here, the notation "+" on domains means the disjoint union of domains, the function Value
maps an attribute onto its value component, and the function Valid maps an attribute onto
its valid-time corrmponent. (Formal definitions for both appear in Appendix B.)

Note that it is possible for all but one of a tuple's attributes to have an empty time-
stamp. If an attribute's time-stamp is empty, then its valid time is assumed to be unknown.
Hence, empty attriubute time-stamps can be thought of as corresponding to temporal nulls.
We allow tuples to contain temporal nulls for some, but not all, attributes.

We define two tuples, ht and ht', to be value-equivalent if and only if VI, I E A,
Value(ha(I)) = Value(ht'(I)). A historical state is then defined as a finite set of historical
tuples, with the restriction that no two tuples in the state are value-equivalent. W1 rep-
resents the domain of all historical states, consistent with the relation signature z, that a
historical relation may assume.

EXAMPLE. Assume that we are given the relation signatuie Student with attributes
{same, course) and the following set of tuples over this relation signature. For this and
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all later examples, assume that the granularity of time is a semester relative to the Fall
semester 1980. Hence, 1 represents the Fall semester 1980, 2 represents the Spring semester
1981, etc.

S= { (("Phil", {1,3}), ("English", (1,31)),

(("Norman", {1,21), ("English", {1,2})),

(("Norman", {5,6}), ("Math", {5,6))),

(("Phil", {4}), ("English", {4})) I

For notational convenience we enclose each attribute value in parentheses and each tuple
in angular brackets (i.e., ( )). Also for notational convenience, we assume the natural
mapping between attribute names and attribute values (e.g., sname --- ("Phil", (1,3)),
and course - ("English", (1, 3))). Note that S is not an allowable historical state because
there are value-equivalent tuples in the set (the first and fourth tuples are value-equivalent).
If we replace the two value-equivalent tuples in S with a single tuple, then the new set S,
is a historical state in Ustudent.

S { (("Phil", 11,3,4)), ("English", {1,3,4})),

(("Norman", (1,2)), ("English", {1,2))),

(("Norman", {5,6)), ("Math", 15,6))) } a

In summary, the historical algebra places the same basic restrictions on the value
components of attributes as the snapshot algebra places on attribute values. Neither set-

valued attribute value components nor tuples with duplicate attribute value components are
allowed. Valid time, however, is represented by a set-valued time-stamp that is associated
with individual attributes. A time-stamp represents possibly disjoint intervals and the
time-stamps assigned to two attributes in a given tuple may, but need not, be identical.

3.3 Historical Operators

We present eight operators that serve to define the historical algebra. Five of these op-

erators - union, difference, cartesian product, projection, and selection - are analogous
to the five operators that serve to define the snapshot algebra for snapshot states [UUman

82]. Each of these five operators on historical states is represented as dp to distinguish
it from its snapshot algebra counterpart op. Historical derivation is a new operator that
replaces the time-stamp of each attribute in a tuple with a new time-stamp, where the new
time-stamps are computed from the existing time-stamps of the tuple's attributes. The
remaining two operators, aggregation and unique aggregation, compute aggregates. After

defining the operators, we show that all eight preserve the value-equivalence property of
historical states.
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EXAMPLE. The three historical states S1, S2, and 53 are used in the examples that ac-
company the definitions of the operators. S2 , like S1, is a historical state over the relation
signature Student with attributes {mname, course). S3 is a historical state over the relation
signature Home with attributes {fnaa., state). While the attributes of a tuple in S1, S2,

and 53 have the same time-stamp, in general, attributes within a tuple can have different
time-stamps.

S2 = { (("Phil", {3,4}), ("English", {3,4})),

(("Norman", 17}), ("Math", {7})),

((Tom, {5,6}), ("English", J5,6))) }

S3 = { (("Phil", {1,2,3}), ("Kansas", {1,2,3})),

(("Phil", {4,5,61), ("Utah", f4,5,6})),

(("Norman", {1,2,5,6}), ("Utah", {1,2,5,6})),

(("Norman", {7,8)), ("Texas", {7,8))) }r

3.3.1 Union

Let Q and R be historical states of m-tuples over the relation signature z with attributes
A = { 11, ... ,, I. ). Then Q iR, the historical union of Q and R, is defined as

Q Ci R -A {q' I Q(q) A -i(3r, r E R A V1, I E A. Vaiue(q(l)) = Value(r(I)))}

U {rm I R(r) A -i(3q, q E Q A VI, I E A, Value(r(I)) = Value(q(I)))}

U {u" 3q3r, q E Q A r E R A VI,! E A,

Value(u(l)) = Value(q(I)) = 'ilue(r(l))

A Valid(u(I)) = Valid(q(I)) U Valid(r(J)))

Q Ci R is the set of tuples that are in Q, R, or both, with the restriction that each pair of
value-equivalent tuples is represented by a single tuple. Note that if a tuple in Q and a
tuple in R are value-equivalent, then they are represented in Q Ci R by a single tuple. The
time-stamp associated with each attribute of this tuple in Q Ci R is thp set union of the
time-stamps of the corresponding attribute in the value.equivalent tuples in Q and R.
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EXAMPLE. S1 OS 2 = { (("Phil", {1,3,4}), ("English", {1,3,4})),

(("Norman", {1,2}), ("English", {1,2})),

(("Norman", {5,6,7}), ("Math", {5,6,7})),

((Tom, {5,6}), ("English", {5,6})) 0

3.3.2 Difference

Let Q and R be historical states of m-tuples over the relation signature z with attributes
A = {/I, ... , Im }. Then Q - R, the historical difference of Q and R, is defined as

Q. R A {q" I Q(q) A -•(3r, r E R A VI, I E A, Value(q(I)) = Value(r(I)))}

U {u' 1(3q 3 r, q E Q A r E R A VI, I E A,

Value(u(I)) = Value(q(I)) = Value(r(1))

A Valid(u(I)) = Valid(q(I)) - Valid(r(I)))

A (31, 1 E A A Valid(u(I)) # 0)

Q - R is the set of all tuples that satisfy three criteria. First, a tuple in Q - R must have
a value-equivalent counterpart in Q. Second, the time-stamp of each attribute of a tuple
in Q - R must equal the set difference of the time-stamps of the corresponding attribute
in the value-equivalent tuple in Q and the value-equivalent tuple in R, if any. Third, the
time-stamp of at least one attribute of each tuple in Q - R must be non-empty.

EXAMPLE. St-- S 2 = { (("Phil", {1}), ("English", {1))),

(("Norman", {1,2}), ("English", {1,2})),

(("Norman", {5,6)), ("Math", {5,6})) }

3.3.3 Cartesian Product

Let Q be a historical state of m1.tuples on the relation signature zQ with attributes
AQ =fi { lQ,1, , *.., 9om,1 } and R be a historical state of m 2-tuples on the relation signa-
ture ZR with attributes AR =ff { !R,, ... , IR,,n, }. Also assume that AQ n AlR = 0. Then
Q i R, the historical cartesian product of Q and R, is defined as
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Qk R {uM- +,,2 I (3q, q E Q A VI, I E AQ, Value(u(I)) = Value(q(I))

A Valid(u(I)) = Valid(q(I)))

A (3r, r E R A VI, I E AR, Value(u(I)) = Value(r(I))

A Valid(u(I)) = Valid(r(I)))

The cartesian product operator for historical states is identical to the cartesian product
operator for snapshot states. Q ) R is the set of (ml + m2 )-tuples, each of which is formed
from a mi-tuple in Q and a m2-tuple in R. While our definition of cartesian product requires
that the attributes defined by the signatures zQ and ZR be disjoint, we could eliminate this

last restriction and effectively allow the cartesian product of snapshot states on arbitrary
signatures through the introduction of a simple attribute renaming operator [Maier 1983].

EXAMPLE.

SI, S3 =

{(("Phil", (1,3,4)), ("English", {1,3,4}), ("Phil", {1,2,3}), ("Kansas", fl,2,3))),

(("Phil", {1,3,4}), ("English", {1,3,4)), ("Phil", {4,5,6}), ("Utah", {4,5,6})),

(("Phil", 11,3,4)), ("English", {1,3,4)), ("Norman", (1,2,5,6)), ("Utah", (1,2,5,6))),

(("Phil", {1,3,4]), ("English", {1,3,4)), ("Norman", {7,8}), ("Texas", {7,8))),

(("Norman", {1,2)), ("English", f1,2)), ("Phil", {1,2,3}), ("Kansas", f1,2,3))),

(("Norman", {1,2}), ("English", (1,2)), ("Phil", {4,5,6}), ("Utah", {4,5,6))),

(("Norman", {1,2)), ("English", {1,2}), ("Norman", {1,2,5,6)), ("Utah". {1,2,5,6))),

(("Norman", {1,2)), ("English", {1,2)), ("Norman", (7,8)), ("Texas", {7,8))),

(("Norman", {5,6}), ("Math", 15,6)), ("Phil", {1,2,3)), ("Kansas", {1,2,3))),

(("Norman", (5,6}), ("Math", (5,6)), ("Phil", (4,5,6}), ("Utah", {4,5,6))),

(("Norman", {5,6)), ("Math", (5,6)), ("Norman", {1,2,5,6}), ("Utah", 11,2,5,6))),

(("Norman", {5,6)), ("Math", (5,6)), ("Norman", {7,8}), ("Texas", {7,8))) }

Let this be historical state S4 with attributes {sname, course, hname, utate). 3

3.3.4 Selection

Let R be a historical state of m-tuples on the relation signature z with attributes A =

{ It, ... , I1" }. Also, let F be a boolean function involving
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* Attribute names h1, ... , I,,;

* Constants from the value domains to which z maps the attribute names Is, ... ,

e Relational operators <, =, >; and

e Logical operators A, V, and -'

where, to evaluate F for a tuple r, r E R, we substitute the value components of the
attributes of r for all occurrences uf their corresponding attribute name3 in F. Then the
historical selection of R, denoted by bF(R), is defined as

&F(R) - {r'nIrER A F(r)}

Thus, &YF(R) is simply the set of tuples in R for which F is true.

EXAMPLE.

asnamemhname(S4) -

(("Phil", {1,3,4)), ("English", (1,3,4)), ("Phil", {1,2,3}), ('Kansas", {1,2,3})),

(("Phil", {1,3,4)), ("English", (1,3,41), ("Phil", {4,5,6)), ("Utah", {4,5,6})),

(("Norman", {1, 2)), ("Ernglish", (1, 21), ("Norman", {I, 2,5, 6)), ("Utah", {1, 2,5,6))),

(("Norman", (1, 2)), ("English", {1, 2)), ("Norman", {7,8)), ("Texas", {7,8))),

(("Norman", {5,6}), ("Math", (5,61), ("Norman", {1,2,5,61), ("Utah", (1,2,5,6))),

(("Norman", (5,6)), ("Math", (5,6)), ("Norman", {7,8}), ("Texas", {7,8})) }

Le.q this be historical state Ss with attributes (shame. course, hname, stat.e}.

3.3.5 Projection

Let R be a historical state of m-tuples on the relation signature z with attributes AR =

{ IR,I, ... , IR,m ). Also, assume that we are given a set of identifiers X of cardinality n,
where X g .4. Then *x(R), the historical projection of R, is defined as
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*x(R) = {u- I (VI, I E X, Vt, t E Valid(u(l)),

3r, (r E R

A Vi, IV E X, Value(u(I')) = Value(r(l'))

A t E Valid(r(J)))

)

A (Vr, (r E R A VI, I E X, Value(r(I)) = Value(u(1))),

VI, I c X, Valid(r(I)) 9 Valid(u(I))

)

A (31, I E X A Valid(u(l)) $ 'n)

Like the projection operator fe, snapshot states, the projection operator for historical states
retains, for each tuple, only the tuple components that correspond to the attribute names
in X. All other tuple components are removed. Value.equivalent tuples in the resulting set
axe then combined and tuples that have an empty valid component for all tuple components
are removed.

EXAMPLE. s{,nme,.gat.)(Ss)= { (("Phil", {1,3,4)), ("Kansas", (1,2,3))),

(("Phil", {1,3,4}), ("Utah", (4,5,6))),

(("Norman", {1,2,5,6}), ("Utah", {1,2,5,6})),

(("Norman", {1,2,5,6}), ("Texas", {7,8})) }

Let this be hi3torical state Ss over the relation signature Enrollment with the attributes
(shame, state}. Also assume that in this historical state the valid-time component of
attribute shame represents the interval(s) when the specified student was enrolled and that
the valid-time component of attribute state represents the interval(s) when the student
was a resident of the specified state. 03

The operator * also supports projections on expressions. Rather than simply project
a tuple onto a subset of its attributes, the operator may project a tuple onto an arbitrary

number of new attributes. Then, the value (or valid-time) component of each new attribute
is a function of the value (valid-time) components of the tuple's attributes. Assume that
we are given the n arbitrary, but distinct, identifiers At, ... , In. Let Evalue1 , 1 < 1•< n, be
an arbitrary expression involving the attribute names IR,., 1 < a < m, where Evalueg is
evaluated, for a tuple r, r E R, by substituting the value coraponents of the attributes of
r for all rccurrences of their corresponding attribute names in Evaluel. Also, let Evalidt,
1 < 1 _ n, be an arbitrary expression involving the attribute names IR.,, 1 _5 a < m, where



31

Eva'idl is evaluated for a tuplo r, r E R, by substituting the valid-time components of the
attributes of r for all occurrences of their corresponding attribute names in Evalidl. In
addition, assume that evaluation of Evalue, for every tuple r produces an element of the

domain 2), 1 _< c 5 e, and that evaluation of Evalidl produces an element of the domain
P(T). Then, a version of the projection operator *, more general than that given Abcve,

is defined as

{(Et•. (•EJv,,, Slid 2 )), .... (In, (Eva,.en Eval•ad•. (0R)

0u" I (VI, 1 •_ 1 n_., Vt, t E Valid(u(11)),

3r, (rE B

A Vh, 1 <_ h <5 n, Value(u(fh)) = Evalueh(r)

A t E Evalid4(r))

)

A (Vr, (r E R A Vi, 1 <_1 < n, Evaluel(r) = Value(u(Ii))),

Vh, 1 < h :_ n, Evalidh(r) C Valid(u(Ih))

)

A (31, 1 i5 1 <_ n A Valid(u(Ji)) 6 0)

Here, the result is a historical state with attributes {11, , ... , Im}.

EXAMPLE.

*{(name , (sname ,same)) (stage, (atate, snamenetateil)(S 6 ) =

{((-Phil", {1,3,4)), ("Kansas", {1,31)),

(("Phil", (1,3,4}), ("Utah", {4})),

(("Norman", {1,2,5,6}), ("Utah", {1,2,5,6))),

The result is a historical state with attributes {name. state) rather than {nhame. statel}.

The valid-time component of attribute name represents the interval(s) when the specified
student was enrolled, but the valid-time component of attribute state represents only the
subinterval(s) of enrollment when the student was a resident of the rpecified state. Note
that, because Norman's enrollment never overlapped his residency in Texas, the valid-time

corwpon.nt of the attribute state of the fourth tuple is the empty set.
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3.3.6 Historical Derivation

The historical derivation operator 6 is a new operator that does not have an analogous
snapshot operator. 6 Is effectively a combination of temporal selection and projectiov on a
tuple's attribute time.stamps.

Let R be a historical state of m.tuples on the relation signature * with attibutes
A = (It, ... , I4). For a tuple r, r E R, 6 calculates a new valid-time component fer each of
r's attributes as a function of selective intervals in r's attribute time-stamps. The new valid-
time component for attribute I., 1 :_ a < m, is specified by a temporal function Va. To
compute a new valid., time component for I., 6 first determines the non-overlapping intervals
in each of r's attribute time-stamps. Then, 6 determines all assignments of those intervals
to their attribute names for which a boolean function G is true. For each assignment of
intervals to attribute names for which G is true, the operator evaluates V.. The sets of
times resulting from the evaluations of V. are then combined to form a new valid-time
component for la. The operator has the following form.

,,~60. wi, ,vI) ... ,v. V))(X

EXAMPLE.

6(,enamt~ate)inanme, (((navne,*.name), (state. oname)) (SO)

In this example, the predicate requires that an interval from the valid.time component or
attribute sna,, be contained iu an interval from the valid-time component of attribute
atate. The new valid-time component of each attribute is simply the union of intervals
from anme's time-stamp that satisfy the predicate. We discuss this example further, once
we have defined the historical derivation operator formally. 0

Several functions, defined on the domains T and PO(T), are used either directly or
indirectly in the definition of the historical derivation operator. Before defining the deriva-
tion operator itself, we describe informally theme anxiliary functions. Formal definitions
appear in Appendix B.

First takes a set of times from the domain P(T) and maps it onto the earliest time in the
set.

Last takes a set of times from the domain P'(T) and maps it onto the latest time in the
set.

Pred is the predecessor function on the domain T It maps a time onto its immediate
predecessor in the lirnea: ordering of all times.
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Succ is the successor function on the domain 7: It maps a time onto its Immediate successor
in the linear ordering of all times.

Eztend maps two times onto the set of times that represents the interval between the first
time and the second time.

Interval maps a set of times onto the set of intervals containing the minimum number of
non-disjoint intervals represented by the input set. Each time in the input set appears in
exactly one interval in the output set and each interval in the output set is itself represented
by a set of times.

EXAMPLE. Consider the following tuple taken from the historical state Se defined previ-
ously:

r = (("Norman", {1,2,5,6}), ("Texas", {7,8}))

then Interval(Valid(r(sname))) = {{I,2, {5, 6}}

Interval( Valid(r(state))) = {{7, 81} 0

Given these auxiliary functions, we can now define the historical derivation operator
on historical states. Let V,, 1 £ a < mn, be a temporal function involving

* Attribute names 1,, .. , ,.;

e Constants from the domain W of non-disjoint intervals defined in Appendix B;

a Functions First, Last, and Eztend; and

o Set operators u, n, and -;

and let G be a boolean function involving

e Temporal functions, as just described;

e Relational operators <, =, and >; and

# Logical operators A, V, and -i.

Then, 6a, (11.vi) ..., (I,,.v,,))(R), the historical derivation of R, is defined as
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6 , {(J,, ..... (I.m, V.))(R) A

{U' 13r, (r e R

A Va, 1:_ a < m,

(Value(u(I.)) f Value(r(l.))

A (Vt, t E Valid(u(f,)),

31N t  3•IN, (IN e Interval( Valid(r( I))) A ...

A INn E Interval(Valid(r(Im)))

A G((41, I•M),..., (In, INm,))

At E V,((l, INO),..., (Im, INm))

)

)

A (VIN1 ... VINn, (IN, E Interval(VaLhd(r(1 1))) A ...

AI. E~r I nterval( Valid(r(ln)))

A G((,11 IN,), ... ,9 (I,,, Mmn))),I

va((h,, INI), ... , (In, Mmn)) g_ Valid(u(I.))

A 3a, 1 < a < m A Valid(u(I,)) # 0

The functions G and V., 1 _< a < m, are always evaluated for a specific assignment of non-
disjoint intervals to attribute names I1, ... , I4. G evaluates to either true or false and
V. evaluates to an element of P1("). For a tuple r, r E R, and intervals INb, 1 < b < m
and INb E Interval( VaLid(r(Ib))), we evaluate G((11 , IN,), ... , (In, IN,.)) by substituting
IN1 for all occurrences of 4 in G. Likewise, we evaluate V.((Q1, IN,), ... , (In, INn)) by
substituting INb for all occurrences of 4b in V.. If any one of r's attribute values has a
disjoint time-stamp, there will be multiple distinct evaluations of G (and V.) for r, one for
each possible assignment of intervals to attribute names, each resulting in a value of true
or false for G (and a set of chronons for V.).
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EXAMPLES.

6(enafenetate)u...ame, f.Oname, sname), (.stat, nsn"e)) S)=

{ (("Phil", (1)), ("Kasas",{1})),

(("Norman", {l,2,5,6)), ("Utah", (1,2,5,6))) }

In this example, G is (sname n state) = sname and VI and V2 are both sname. A stu-
dent tuple a, a E Ss on page 30, satisfies predicate G if the student had at least one in-
terval of enrollment (i.e., INnam E Interval( Valid(s(ename)))) during which his home
state (i.e, attribute state) did not change (i.e., (INs.me fn INstat.)ff IN= ore., where
IN.t.68  C Interval( Valid(s(etat*)))). The new time-stamp for each attribute of a tuple
that satisfies G for some assignment of intervals INnname and INt.ste is simply the union
of the IN,,.m. intervals from each assignment of intervals that satisfy G. In the first tuple
in S6, there are three intervals, two assigned to the attribute snmae ({1}, {3,41) and one
assigned to th3 attribute state ((1,2,3)). From this tuple, we find that Phil was a resi-
dent of Kansas during his first interval of enrollment (G((sname, (1)), (state, (1, 2,3))) =
(1) n 11,2,3) Z (1)) but was a resident of Kansas during only part of his second interval
of enrollment (G((sname, f3,4)), (state, (1,2,3)))= (3,4) nf (1,2,3) 6 (3,4)). Hence,
this tuple's attributes ae assigned a time-stamp of {1) in the resulting state. From the
second tuple in Ss we find that Phil was not a resident of Utah during his first interval
of enrollment (G((sname, (1)), (state, (4,5,6))) = (1) nl (4,5,6) 0 (1)) and lived in Utah
during only part of his second interval of enrollment (G((sname, {3,4)), (state, (4,5,6))) =
f3,4) n (4,5,6) # (3,4)). Hence, the time-stamp for this tuple's attributes would be as-
signed the empty set in the resulting state except the definition of the historical derivation
operator disallows tuples whose attributes all have an empty time-stamp. This tuple is
therefore eliminated and does not appear in the resulting state. From the third tuple in
S6 we find that Norman was a resident of Utah during both of his intervals of enroll-
ment (G((snarme, (1,2)), (state, (1,2))) = {1,2) nf (1,21 Z (1,2) and G((snan6t, (5,6)),
(state, (5,6))) = (5,6) n (5,6) Z (5,6)). Hence, this tuple's attributes are assigned a
time-stamp of (1,2,5,6) in the resulting state. From the fourth tuple in S6 we find that
Norman was not a resident of Texas at any time during his enrollment (G((sname, 1, 2)),
(state, (7,8))) = (1,2) n (7,8) $ (1,2) and G((sname, (5,6)), (state, (7,8))) = (5,6) n
(7,8) 0 (5,6)); this tuple is therefore eliminated from the resulting state.

6(snamenltate)qasname A (snamemflhte))60, ((&name, sn.meinatse), (state, snamenstate))(S6) "

{ (("Phil", (3)), ("Kansas", {3))),

(("Phil", (4)), ("Utah", (4))) }

A student tuple a, a E Ss, satisfies predicate G if the student had at least one interval
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of enrollment during which his home state changed. The new time-stamp for each tu-
pie that satisfies G for some assignment of intervals INa,.,. and INt.t, is the union of
1natne f IN*,,,, from each assigament of Intervals that satisfy G. From the first tuple in

S we find that PhIU had one interval of enrollment during which his home state changed
V'I/

(i.e., (3,4} n (1,2,3) } f3,4) and (3,4) n (1,2,3) 0 0). Hence, this tuple's attributes are
assigned a time-stamp of (3,4) n (1,2,3) = (3) in the resulting state. From the second
tuple In Se we find that Phil had one interval of enrollment during which his home state
changed. Hence, this tuple's attributes are assigned a time-stamp of (4) In the rewultlng
state. Note that Norman does not satisfy the restriction; his home state was the same
during his two periods of enrollment. Hence, the third and fourth tuples are eliminated
from the resulting state. a

Note that the historlcaý derivation operator actually performs two functions. First,
it performs a selection function on the valid-time components of a tuple's attributes. For
a tuple r, if G is false when an interval from the valid-time component of each of r's
attributes is substituted for each occurrence of its corresponding attribute name in G,
then the temporal information represented by that combination of intervals is not used
in the calculation of the new time-stamps for r's attributes. Secondly, the derivation
operator calculates a new time-stamp for attribute la, 1 < a < m, from those combinations
of intervals for which C is true, using V.. If V1, ... , Vm are all the same function, the
tuple is effectively converted from attribute time-stamping to tuple time-stamping.

The derivation operator is necessarily complex because we allow set-valued time-
stamps; it would have been less complex if we had disallowed set-valued time-stamps. Then
the derivation operator could have been replaced by two simpler operators, analogous to the
selection and projection operators, that would have performed tuple selection and attribute
projection in terms of the valid-time components, rather than the value components, of
attributes. But, as we will see in Chapter 8, disallowing set-valued time-stamps would have
required that the algebra support value-equivalent tuples, which would have prevented the
algebra from having several other, more highly desirable properties.

3.4 Aggregates

Aggregates allow users to summarize information contained in a relation's state. Aggregates
are categorized as either scalar aggregotes or aggregate functions (Snodgrass et al. 1987].
Scalar aggregates return a single scalar value that is the result of applying the aggregate
to a specified attribute of a snapshot state. Aggregate functions, however, return a set of
scalar values, each value the result of applying the aggregate to a specified attribute of
those tuples in a snapshot state having the sarme values for certain attributes. Database
management systems based on the relational model typically provide several aggregate
operators. For example, Ingres (Stonebraker et al. 1976] provides a count, sum, average,
minimum, maximum, and any aggregate operator. Ingres also provides two versions of the
count, sum, and average operators, one that aggregates over all values of an attribute and
one that aggregates over only the unique values of an attribute.
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Several researchers have investigated aggregates in time-oriented relational databases

(Ben.Zvi 1982, Jones et al. 1979, Navathe & Ahmed 1986, Snodgrass et al. 1987, Tansel

At al. 1985]. Their work reflects the consensus that aggregates when applied to historical

states should return not a scrIar value, but a distribution of scalar values over time. Jones,

et al. also introduced the concepts of instantaneous aggregates and cumulative aggregates.

Instantaneous aggregates return, for each time t, a valuxe computed only from the tuples

valid at time t. Cumulative aggregates return, for each time t, a value computed from all

tuples valid at any time up to and including t, regardless of whether the tuphts are still
valid at time t. Note that a time t has meaning only when defined in terms of the time

granularity. Hence, instantaneous aggregates can be viewed as aggregates over an interval
whose duration is determined by the granularity of the measure of time being used. Others
have generalized the definition of instantaneous and cumulative aggregates by introducing
the concept of moving aggregation windows [Navathe & Ahmed 1986]. For an aggregation
window function to from the domain T onto the non-negative integers, an aggregate returns,

for each time t, a value computed from tuples valid either at time t or at some time In the
interval of length w(t) immediately preceding time t. Hence, an instantaneous aggregate

is an aggregate with an aggregation window function w(t) = 0 and a cumulative aggregate
is an aggregate with an aggregation window function w(t) = oo.

Klug introduced an approach to handle aggregates in the snapshot algebra [Kilug
1982]. His approach makes it possible to define aggregates in a rigorous way. We use his
approach to define two historical aggregate functions for our algebra:

* A, that calculates non-unique aggregates, and

A R-i, that calculates unique aggregates.

These two historical aggregate functions serve as the historical counterpart of both scalar

aggregates and aggregate functions.

The historical aggregate functions must contend with a variety of demands that surface
as parameters (subscripts) to the functions. First, a specific aggregate (e.g., count) must
be specified. Secondly, the attribute over which the aggregate is to be applied must be
stated and the aggregation window function must be indicated. Finally, to accommodate

partitioning, where the aggregate is applied to partitions of a historical state, a set of
partitioning attributes must be given. These demands complicate the definitions of A and

AT, but at the same time ensure some degree of generality to these operators.

For both definitions, let R be a historical state of m-tuples over the relation signature
z with attributes AR - {J1, 1.., 4}. Also let Q be a historical state with attributes AQ,
where AQ C_ AR. Finally, assume that we axe given identifiers 1. and I.,, and a set of

identifiers B, with the restrictions that I1 0 B, B UI.f1) g AcQ, and 4 ,ug 0 AQ. If B is
empty, our historical aggregate functions simply calculate a single distribution of scalar
values over time for an arbitrary aggregate applied to attribute I, of R. If B is not
empty, our historical aggregate functions calculate, for each subtuple in Q formed from the

attributes B, a distribution of scalar values over time for an arbitrary aggregate applied
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to attribute I1 of the subset of tuples in R whose values for attributes B match the values
for attributes B of the tuple in Q. Hence, B corresponds to the by-list of an aggregate
function in conventional database query languages. I0,. is simply the name of the aggregate
attribute in the resulting state. Assume, as does Klug, that for each aggregate operation
(e.g., count) we have a family of scalar aggregates (e.g., Count) that performs the indicated
aggregation on R (e.g., Countj1 , Count12, ... , Countl,, where Countg6 , 1 :_ a :_ m, counts
the (possibly duplicate) values of attribute I, of R). We will define our historical aggregate
functions in terms of these scalar aggregates.

3.4.1 Partitioning Function

Before defining the historical aggregate functions i and A-0, we define a partitioning
function that will be used in their definitions. This function simply extracts from historical
state R those tuples that participate In the calculation of an aggregate value for attributes
B of a tuple q, q E Q, at time t. The function also restricts the attribute time-stamps of
selected tuples to intervals that overlap a specified aggregation window at time t.

Partition(R, q, t, w, I., B) A

{gulI (3r), (r E R A VI, I E B, Value(r(I)) = Value(q(I))

A VI, I E AR,

(Value(u(I)) = Value(r(I))

A (Vt', t' E Valid(u(I)),

UIN, (IN 6 Interval( Vatid(r(1)))
S^A t - w(t) < 1 -. (IN n Extend(l, t) 54 0)

A t - w(t) Ž 1 - (IN n Eztend(t - w(t), t) #)

A t' E IN

)
)

A (VIN, (IN E Interval( Valid(r(I)))

A t - w(t) < 1 - (IN n Extend(I, t) # 0)

A t - w(t) Ž 1 -. (IN n Eztend(t - w(t), t) 0)),

IN _ Valid(u(I))

A Valid(u(lo)) ) 0

A VI, I E B, Valid(u(I)) 0 0
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where q E Q, t E T, and w is an aggregation window function. This function retrieves from
R those tuples that have the same value components for attributes B as q and have time
t, or some time in the interval of length w(t) immediately preceding t, in the time-stamp
of attributes B and I.. Note that for each tuple in the resulting state, the time-stamp of
attribute 4, 1 < b < m, is constructed from those intervals in the time-stamp of attribute 4b
in the value-equivalent tuple in R that contain time t, or some time in the interval of length
w(t) immediately preceding t. The predicates t - w(t) < 1 -* ... and t - w(t) Ž_ I --* ...
are used here to ensure that Partition is well-defined as Extend is defined only for elements
in the domain T

EXAMPLES.

Partition(Se, (), 5, 0, narame, 0) = { (("Norman", {5,6}), ("Utah", {5,6)))

(("Norman", {5,6}), ("Texas", 0)) }

Because time 5 is specified and the aggregation window function, denoted by zero, is the
constant function w(t) = 0, tuples are selected whose time-stamp for attribute sname
overlaps time 5. Only the third and fourth tuples in S6 satisfy this requirement. The

partitioning function here effectively returns the tuples for those students who were enrolled
in school at time 5. Note that the time-stamp of each attribute in the selected tuples has
been restricted to the interval from the attribute's original time-stamp overlapping time 5,
if any.

Partition(Se, (("Phil", {1,3,4}), ("Utah", {4,5,6})), 5, 0, sname, {state}) =

{ (("Norman", {5,6}), ("Utah", {5,6})) }

where Q is here assumed to be S6. Tuples are selected for those students who were enrolled
in school and a resident of Phil's state (Utah) at time 5. Only the third tuple in S6 satisfies
this requirement. Although Phil was a resident of Utah at time 5, he was not enrolled in
school at time 5. Hence, the second tuple in Ss is not included in this partitiou.

Partition(Se, (("Phil", {1,3,4}), ("Utah", {4,5,6))), 5, 1, sname, {state}) =

{ (("Phil", {3,4}), ("Utah", (4,5,6)))

(("Norman", 15,6}), ("Utah", {5,6})) }

Here tuples are selected for those students who were enrolled in school and a resident of
Utah within a year (w(t) = 1) of time 5. Both the second and third tuples in Ss satisfy
this requirement. The second tuple in S6 is now included in the partition because Phil was
a resident of Utah and enrolled in school at time 4. 0
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3.4.2 Non-unique Aggregates

The historical aggregate function A calculates, for each tuple in Q, a distribution of scalar
values over time for an arbitrary aggregate applied to attribute I. of the subset of tuples
in R whose value components for attributes B match the value components for attributes
B of the tuple in Q. If B is empty, A simply calculates a single distribution of scalar
values over time for the aggregate applied to attribute I of R. If we let f represent an
arbitrary family of scalar aggregates and w represent an aggregation window function, then
the historical aggregate function A has the following form.

-- Z '4f, w,, 1., 1.99. B(Q, R)

EXAMPLE.

ACount, o, ,tate, semester-cont, 0(*.tate(S6), SO)

In this example, .i applies the aggregate operation count to attribute state of S6 to
compute a value for the new aggregate attribute semester-count. Because the aggregation
window function is the constant function w(t) = 0, an instantaneous aggregate is computed.
Also, because there are no by-list attributes (i.e., B is empty), a single distribution of scalar
values over time is computed. We discuss this example further, once we have defined the
historical aggregate function A formally. C3

We now define A on the historical states Q and R, denoted by A1, w,, I I..V,. B(Q, R),
as

Af, wI.,4 1.,, B(Q, R) C teT(#eBuI.9g) (

{q U ({1o - (z, {t})} I q E Q

A t - w(t) < 1 -. (Valid(q(1l)) n Eztend(1, t) # 0

A V I, I E B,

Valid(q(l)) n Eztend(1, t) # 0)
A t - w(t) > 1 -. ( Valid(q(1)) nl Eztend(t - w(t), t) i 0

A V I, I E B,

Valid(q(I)) n Eztend(t - w(t), t) # 0)

A X = fl.(q, t, Partition(R, q, t, w, I., B))
D))

where I... - (z, {t}) denotes the asignment of the aggregate value (z, (t}) to the attribute
1.0g. If B is not empty, function I first associates with each time t the partition of historical
state Q whose tuples have t, or a time in the interval of length w(t) immediately preceding
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t, in the valid-time component of attributes B. For each of these partitions, , then
constructs a set of historical tuples. Each tuple in the set contains all the attributes B
of a tuple q in the partition and a new aggregate attribute, I.... This new attribute's
valid-time component is the time t corresponding to the partition and its value component
is the scalar value returned by the aggregate fl., when flo is applied to the partition of
R whose tuples have value components that match q's value components for attributes B
and 1. and whose valid-time components for attributes B and 1. overlap either t or the
interval of length w(t) immediately preceding t. Then A performs a historical union of the
resulting sets of historical tuples to produce a distribution of aggregate values over time for
each tuple in Q. If B is empty, A constructs for each time t a historical state that is either
empty or contains a single tuple. If the valid-time component of attribute Ia of no tuple r
in R overlaps t or the interval of length w(t) immediately preceding t, then the historical
state is empty. Otherwise, the historical state contains a single tuple whose valid-time
component is the time t and whose value component is the scalar value returned by the
aggregate fl., when flo is applied to the partition of R whose tuples have a valid-time
component for attribute (a that overlaps either t or the interval of length w(t) immediately
preceding t. Then A performs a historical union of the resulting sets of historical tuples to
produce a single distribution of aggregate values over time.

Note that a tuple and a time are passed as parameters to the scalar aggregate fj*,
along with a partition of R, in the definition of A. Although most aggregate operators can
be defined in terms of a single parameter, the partition of R, the additional parameters are
present because aggregates that evaluate to events or intervals, one of which is defined in
Section 5.3, require them.

EXAMPLES. 4co,,sao, enser-cou,, So)= { ((1, {3,4,7,8})),

((2, {1,2,5,6))) }

The function A computes the number of states in which enrolled students resided. Because
w(t) = 0 and the time granularity of S6 is a semester, the resulting state represents ag-
gregation by semester. Hence, the aggregate is in effect an instantaneous aggregate. For
the interval (1,2), there were two states (Kansas in the first tuple and Utah in the third
tuple). For the interval {3,4), there was one state (Kansas in the first tuple at time 3 and
Utah in the second tuple at time 4). For the interval {5,86, there also was only one state
(Utah), but it appeared in both the second ani the third tuples. It was counted twice
because the scalar aggregates embedded within A aggregate over duplicate values. For the
interval (7, 8), there was only one state (Texas in the fourth tuple).

Acount. 1, age, year-count, *ate(SO), SO { ((0, {8,9}))

((2, (1,2,3,4,5,6))),

((3, (7))) }
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Again, A. computes the number of states in which enrolled students resided, but now
w(t) 1 1. Hence, the resulting state now represents aggregation by year (assuming two
semesters per year). Although nine does not appear in the time-stamp of attribute state
in any tuple in Ss, a count of one is recorded at time 9 because a tuple, the fourth tuple in
Se, falls into the aggregation window at time 9.

A cocnt, ootate, total-count,(',aat(Ss), 56) = { ((2, {1,2,3})),

((3, {4,5,6})))

((4, {7,8,.... )) }

Now, with w(t) = 0o, A computes a cumulative aggregate of the number of states in which
enrolled students resided.

ACount, 0,a.e, students, {atate}(S6, S6)O { (("Kansas", {1,2,3)), (1, {1,2,3}))

(("Utah", {1,2,4,5,6}), (1, {1,2,4}))

(("Utah", {1,2,4,5,6}), (2, {5,6)))

(("Texas", {7,81), (1, f7,8})) }

Here, A, computes the instantaneous aggregate of the number of enrolled students who
resided in each state. In effect, the aggregate is computed for each subset of tuples in SS
having the same value for the attribute state. For example, the first tuple is computed
by selecting all the tuples in S6 with a state of Kansas and then performing the aggregate
on this (smaller) set. 3

3.4.3 Unique Aggregates

The function A allows its embedded scalar aggregates to aggregate over duplicate attribute
values. We now define a historical aggregate function AV, identical to A, with one exception;
it restricts its embedded scalar aggregates to aggregation over unique attribute values. We
define AU on the historical states Q and R, denoted by A-Of I, ,4, i..,, B(Q, R), as
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.40fI., w,,•, .,, B(Q, R) _ LJy, tET(t.au{ 4t#s)(

{q UIG a-g (Z, ft})})I q E Q
A t - W(t) < 1 -. (Valid(q(l.)) n Extend(1, t)• 0

A V I, I E B,

Valid(q(I)) n Extend(l, t) # 0)

A t - w(t) Ž_ 1 -. ( Valid(q(Io)) n Eztend(t - w(t), t) #0

AVI, IE B,

Valid(q(I)) nl Eztend(t - w(t), t) # 0)

A x = fl.(q, t, Otrue,t(*I.(oPartition(R, q, t, w, la, B))))

This definition differs from that of A only in that the historical projection on attribute
I. of Partition(...) followed by the historical derivation eliminates duplicate values of the
aggregated attribute before the scalar aggregation is performed.

EXAMPLE. A-Count, 0, state, semester-count, O(*.t.te(Se), SO) = ((1, {3,4,5,6,7,8D))

((2, (1,2))) }

This state differs from the non-unique variant only during the interval {5, 6). Here, Utah
is correctly counted only once, even though there are two tuples valid during this interval
with a state of Utah. 0

3.4.4 Expressions in Aggregates

The functions A and A"U allow exprersions to be aggregated and support aggregation by
arbitrary expressions. Let Eaggregate be an arbitrary expression invoiving u historical
aggregate functions. Also, assume that the vih historical aggregate function applies the
scalar aggregate f, to attribute 1,. where the aggregation window function is w,,, and the
partitioning attributes ara B,,. Then the definition of A, now denoted by

is constructed from the definition of A above simply by substituting z = Eaggregate' for
X = f= . (... ). Eaggregate' is Eaggregate where each reference to the vth aggregate has
been replaced by the expression fI,, t, (q, t, Partitlon(R, q, t, w,., I,,, B,)). With these
changes, I allows expressions to be aggregated. A40 can be modified similarly.
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If A and AI? art to 3upport aggregation by arbitrary expressions, changes must be
made to the deOitions of Partition, A, and At? given above. First, let Evaluel, I .< 1 < u,
be an expressionh involving attribute names in .AQ. Evalue, is evaluated for a tuple r in I?

(of a tuple q in Q) by substituting the value components of the attributes of r (or q) for
aU occurrences of their corresponding attribute names in Evaluel. Secondly, let B be the
set of attributes names that appear in at least one Evalue1 , I < 1 <1 u. Then the definition

of Partition, now denoted by

P~rtition( it, q, t, w, la, B, { Evaluel , . . ., Evalue,, })

is constructed from the definition of Partition above simply by substituting the predi-
cate Vi, 1 • 1 _- u, Eveluel(r) = Evaluel(q) for the predicate V1, I E B, Value(r(I) =

Value(q(l)). Tbe definition of A, now denoted by

AU-, f, 4,, 4 , B, {Evniuel,...,Eualueu}(Q, '1)

is constructed from th- definition of A above ximply by adding {Evaluel, ... , Evaluetj as
an additional parameter of the partitioning fuaction. A-V can be modified similarly. With
these changes. A and A' support aggregation by arbitrary expressions.

3.5 Preservation of the Value-equivalence Property

Theorem 3.1 YU, operators Ci, ., 6, &, fr, A, •, and XAI all pieserve the value-equivalence
property of historical states.

PROOF. For the operators 0, -, <, &, and 6 we show that the contrapositivc of the theorem
holds, that is, if there are value-equivalent tuples in an operator's output lelation, then
there are value-equivalent tuples in at least one of its input relations. For the operators *,

A,, and .04U, we show by contradiction that there cannot be value-equivalent tuples in their

output relations.

Case !. 0. Assume that Q 0i R contains at least two value-equivalent tuples. From the
definition of 0, each tuple in Q OR has a value-equivalent t 1pie in Q, R, or both. If two
value-equivalent tuples fi1 and 62 in Q 0 R do not have a value-equivalent tuple in R, then
both are tuples in Q. Similarly, if they do not have a value-equivalent tuple in Q, then

both are tuples in R. If they have a value-equivalent tupi, in both Q and R, then each
was constructed from a value-equivalent tuple in Q and a value-equivalent tuple in R. If
both fil and fi2 had been constructed from the same tuple in Q and the same tuple in R,
then &I and £i would be, by definition, the same tuple. Hence, they were constructed from

different value-equivalent tuples in Q, R, or both.

Case 2. -. Assume that Q - R contains it least two value-equivalent tuples. From the

definition of -', each tuple in Q . R has a value-equivalent tuple in Q but not in R or
a value-equivalent tuple in both Q and R. If two value-equivalent tuples fi and ft2 in
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Q R do not have a value-equivalent tuple In R, then bothi arelpiplos In Q. If thiy have &
value-eqiiivalent tuple In both Q and A, theu each wes constructed from a value-equiwalent
tuple in Q and a, value-equivalent tuplb in R. If beth'fti and 0t2 had been constructed from
the same' tuple in Q and the, same tuple in .R, then fit and W22 would be, by de~lniion. the
same tuple. Hence, they wero constructed frcyn different value-equivalint t~aplea in Q, 'R,
or both.

Case S. . Assume that Q ý R conitains at least two value-equivalent tuples. From the
definition of k, each tuple In Q A R Is constructed ftom'I a tupie in Q and a tuple La R. If
two value-equivalent tuples -a, and fi2 in Q R R had been constructed from~ the same tuple
in Q and the same tuple in~ R, then 41 and fi2 would be.. by definition, the same tuple.
Hence, they were constructed fromi different value-equivalent tuples in Q, R, or both.

Case 4. &. Assume that &IF(P) contains tt least two value-equivalent tuiiles. From the"
definition of &, each tuple in &e(R) is a tuple in' R. Hence,, %ny two value-equivalent tuples
in &F(R) are also tuples in &

Case 5. *r. Asptime that frx( R) contauin at !e~ttwo value-equivalent tuples. For aniy two
such tupies there wvill be' at least one time that appears in the time-etamp of an attribute
of one tuple but not the other tuple; otherwise, they would be identical. Hence, let fit and
fi2 be two value-equivalent tuplos in *x(R) such that there is a time t iu the time-stamp of
attribute 1, 1 e X, of fit but not fi2. From the first clause 4f the'definition of *,there is a
tuple r, r E R, that has t iu the time-stamp of attribute I and the same value, for attrib'jte~s
X as fit. But, from the oecond clai~ae of the definition, the time-stamp of attribute I of
tuple r is a subset of the time-stamp of attribtte I Of fi2, as r also has the hsiane value for
attributes X as ft2. Hence, t is in the time-stamp of attribute I of' O2, contradicting the
assumption that t is in the t~ine-stunP of attribute r of fit but not ft2. Similarly, we arrive
at a contradiction if we assume that there is a time t in the time-ittamp of attribute I of
fij but not fit. P~ence, fit and ft2 have idelitical attribute time-stamps, which implies that
they are the same tupie, contradicting the assumption that kX(R) contains at least two
value-equivalenlt tupies. Note that the outpilt relation of *, unlike the output relations of 0,

, ,and &, would not contain value-equivalent tupies even if i hera were valu'l-equivalent
tuples in its input relation.

Cajie 6. b. Assume that 60, {((I, V,), v.,.(Im V)(A) contains at least two valae-equivalent
tuples, ti and d2. From the definition of 6, each tuple in eG, ((I,, V,), .... (ImV.))}(k) is
constructed from one value-equivalent tuple in R. If til and it2 were constructed from the
same -value-equivalent tuple r, r E R, then they would be the same tuple, as 6 requires not
only that every time t in the time-stamp of attribute 1,, 1 :5 a _< m, of either ti, or 412 be
in V.(...) and sa~tisfy G( ... ) for some assignment of intervals from the time-stamps of r's
attributes to attribute names but that V.( ... ) be a subset of the time-stunp of attribute
1. of both tF1 and di~. Hence, d,1 and d12 were constructed from different value-equivalent
tuples in P..

Came 7. A. Assume that A I,,j', B (Q, R) contains at least two value-equivalent
tupieF. From Case 1 above, if A1, w,, Id, ierg, E(Q, R) contains value-equivalent tuples, then
the input rehtion to I's outermost U^ operator contains value-equivalent tapies. But,



46

this relation is the output of t, whose output relation was shown in Case 5 above never to
contain value-equivalent tuples. Hence, our assumption that ' 1 W, 4, loot, B(Q, R) contalns
at least two value-equIvalent tuples is contradicted.

dCt&" 8 AT. Simply replace A with AU7 In Cue 7. I

3.6 Additional Aspects of the Algebra

We deilned eight algebraic operators in Section 3.3. Yet, there are other operators that can
exist harmoniously with these eight operators. For example, historical intersection (A), (-
join (t), natural join (k), and quotient (-L) all can be defined in terms of thie six operators

, ", •, fx , *, and 6. Also, the historical rollback operator (A), defined in Chapter 4, serves
to generalize the algebra to handle temporal relation states incorporating both valid time
and transaction time.

Historicai intersection can be defined in an identical fashion to its snapshot counter-
part. Definition of the historical version of intersection is straightforward only because we
took care when defining the historical version of difference to ensure its compatible with
defin".ion of intersection in terms of difference. If we let Q and JR be snapRhot states of
m-tuplej over the relation signature z with attributes ,A = { 1, ... , Im }, then Q n R is
defined as [Ullman 1982]

Q n ,R Q - (Q - R).

Now, let Q and R be historical states, rather than snapshot states. Then, Q M &. the
historical intersection of Q and R, is defined as

QoRA- Q-(QZ R).

8-join also can be defined in an identical fashion to its snapshot counterpart. Defi-
nition of the historical version of 0--join is straightforward because its definition involves
only selection and cartesian product, two operators whose historical versions are themselves
defined in an identical fashion to their snapshot couterparts. If we let Q be a historical
state of ml-tuples on the relation signature zQ with attributes AQ = { IQ,,, ... , IQ,,, }
and R be a historical state of m2-tuples on the relation signature zR with attributes

AR i { IR,k, ... , IR.ma }, where .AQ n Ajq = 0, then the 0-join of Q and R is defined as

[Ullman 1982]

Q R_,,R a, = 0 I,2,. eR t,. (Q x R),

where, 1 _5 u _< mi, 1 < v _5 M2 , and IQ,u and IR,, are 0-comparable.

Now let Q and R be historical states, rather than snapshot states. Then the historical
O-join of Q and R is defined as
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Q% 'R &IQ e IA,,( Q R).
Historical natural join and quotient, unlike hictorical difference and 0-Join, can't be

deftned simply by mnbstituting historical operators for snapshot operators in the definition
of their snapshot counterparts (Ullman 19821, beceruse both involve projection, an operation

whose semantics in the historical algebra is substantially different from its semantics in the

snapshot algebra. Small, but important, changes must be made to the definitions to handle
properly the temporal dimension. Let AQ = {f I•,i, ... , QWml }, ARn =, { lInIt 9-, AR,m% }I

&nd .AQR = { It, ... , 4. }. Also let Q be a snapshot state of (ml+m).tuples on the relation
signature z(? with attributes AQ U .AQR and ? be a snapshot state of (m 2+m)-tuplea on the

relation signature zR with attributes AR U AQR. Hence, the attributes AQR are tommon
to Q and R. Rather than rename attributes, we simply refer to the commou attributes in
Q and R as Q.1. and R.I., 1 :< u _5 m, respectively, for notational ,'onvenience. Then
Q m R, the natural join of Q and R, is defined as [Ullman 1982]

Q M R - Q~ QJ (.. ..... QJ,/)U.4R(7., RI, A t,...^AQ...,R.,•.(Q X R)).

Now let Q and R be historical states, rather than snapshot states. I" we were to simply
replace snapshot operators in the above definition with their historical counterparts, ;4
would retain the valid time assigned to attributes AQR in Q but not in R, because the

projection somewhat arbitzarily keeps the common attributes from Q atnd not from R.
Similarly, if we were also to replace references to Q.Iu, 1 < u _5 m, in the projection

operator with reierences to R.I,, t would retain the valid time assigned to attributes ,4AQ
in R but not in Q. Retention of the valid time assigned to uttributes AR in both Q and
R, however, seems more appropriate. Hence, we define Qt;aR, the historical natural join of

Q and R, as

='.1- .I ...u•. ..... B...(Q)u M(

Q6 •*A U{QJ,.(, ,,QI )U .... ( ,,,,o,,),(., . F. )...( , l u• ,

The 6 operator is introduced to compute the valid-time component of attributes in the
resulting historical state common tu both Q and R. Herm, we use union semantics to

retain, for each attribute common to Q and R, the valid time assigned to the attribute

in botL relation states. We can just as easily define other historical variations of natural
join using either intersection or difference semantics. Note that the new time-stamps for
attributes R.I•, ... , R.I. are arbitrary as these attributes are discarded by the projection
operator.

To define quotient, let S be a snapshot state ef (mi + m2)-tuples on the relation signa-
ture zs with attributes AQ U AR and R be a snapshot state of m2-tuples on the relation sig-

nature zR with attributes AR, where AQ = { IQ,, ... , IQ,m, } and AR = {9'A~i, ... , 'R,m2 }.
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Then, the quotient of S divided by R (S + R) intuitively Is the maximal subset Q of VAq(S)

such that Q x R Is contained In S (Maler 1983). S + R Is defined as [Ullman 1982]

S + R -= VAQ(S) - irAq((rlAq(S) x R) - S).

Now let S and R be historical states, rather than snapshot states. If we were to simply
replace snapshot operators in the above definition with their historical counterparts, .-
mould not place the same restrictions on the attribute time-stamps of tuples in Q that It

places on the tuplea' attribute values. The operator would require that each tuple in Q R
have a value-equivalent tuple In S, but it would not require that the attribute time-stamps
of a tuple in Qk¢R be contained in the attribute time-stamps of its value-equivalent tuple

in S. Hence, we propose a definition of -4 that places the same restrictions on the attribute
time-stamps of tuples in Q that it places on the tuples' attribute values. If we let the
historical quotient of S divided by R (S-i-R) be the maximal temporal contents of *AQ(S)

such that Q k R is contained temporally in S, then S--R is defined as

S -^'. R *A Q(S) -A ( U A 61A(Uv,,,... VIM 2 #09,((1Ql,T),..... (1q.M,,T),

(IR, ,I,1,). ..... (I�RnRm, ( U))

where U = (frQ (S) k R)-^ S.

The additional restriction introduced by the 6 clause ensures that no tuple in S-- R can
combine with a tuple in R to produces a tuple whose attribute time-stamps are not con-
tained in the attribute time-stamps of its value-equivalent tuple in S.

EXAMPLES. Assume that we are given the historical state S6 from page 30 over the
relation signature Enrollment with the attributes {mname, state}, duplicated below.

{ (("Phil", {1,3,4}), ("Kansas", {1,2,3})),

(("Phil", {1,3,4}), ("Utah", {4,5,6})),

(("Norman", {1,2,5,6}), ("Utah", {1,2,5,6})),

(("Norman", {1,2,5,6}), ("Texas", {7,8))) }

If we are given the following historical state S7 with attribute {state},

S7 = { (("Utah", {5})),

(("Texas", {7, 8})) }

then

S6 4. S' = { (("Norman", (1, 2, 5, 6})) }
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If, however, we are given

s.-- (("Utah", (5))),
(("Texa", (7, 8, 9))) }

then

S.4-sI 0.

In the first example, although Phil lived in Utah at time 5, he was not Included In S6 4- S 7

because he did not reside in Texas at tires 7 and 8. In the second example, neither Phil
nor Norman were included in Se- Ss because neither resided in Texas at time 9. The 6
clause ensured that Norman was excluded even though he lived in Utah at time 5 and in
Texas at times 7 and 8. a

In addition to defining the eight operators in Section 3.3, we restricted the valid-time
component of attributes to elements from the domain P0(T). By so doing, we were able to
define all operations on attribute time-stamps in terms of the standard operations from set
theory. We can eliminate the restriction and allow time-stamps to have a more complex
structure without difficulty. For example, we could allow the valid-time component of
attributes to be an element from, or even a subset of, P'(T) x P(T). We need only
redefine the functions First, Last, and Interval to handle time.stamps of the new form and
replace each set operation on time-stamps with an equivalent operation for the new time
domain. In this way, our algebra could support either periodicity (Lorentzos & Johnson
1987A] or multi-dimensional time-stamps (Gadia & Yeung 1988].

We also restricted the value component of attributes to atomic elements from a value
domain. Several of the other historical algebras that have been proposed allow set-valued
attributes (Clifford & Croker 1987, Gadia 1986, Tansel 1986]. Their purpose in allowing
set-valued attributes is to model real-world relationships more naturally and to eliminate
the need to replicate data among tuples. These algebras only allow one level of nesting.
Hence, while they can model the relationship between students and courses without repli-
cation of data, they can't model the relationships among students, courses, and grades
without replication of data. Several proposals have already been presented for extending
the snapshot algebra to support non-first-normal-form relations with an arbitrary level of

nesting [Ozsoyoglu et al. 1987, Roth et al. 1984, Schek & Scholl 1986]. Hence, rather
than complicate the semantics of our algebra by allowing set-valued attributes, we propose
extending our algebra to support non-first-normal-form historical relations with an arbi-
trary level of nesting using an approach similar to the one Schek and Scholl used to extend
the snapshot algebra. Then, we could define both relation states and operations on states
recursively. At each recursively defined level, an attribute could take on an atomic value
from a value domain or a structured value from a domain of historical relation states. Our
semantics, however, would be left unchanged, simply embedded in the new structure.

We leave these last two extensions to future work.
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3.7 Summary

In this chapter we have extended the snapshot algebra to support valid time by defining
a historical algebra. Definition of the algebra, required that we introduce only one type
of object, the historical relation. A historical relation was defined in terms of Its scheme
(i.e., relation class and signature) and the set of states that it can assume. Valid time was
accommodated by assigning set-valued time-stamps to attributes. Also, 12 operations on
historical states were defined.

* Nine of the operations have counterparts in the snapshot algebra: union (0), differ.
ence (^ ), cartesian product (k), selection (#), projection (f), intersection (b), 6-join
(t), natural join (.e), and quotient (-I).

* Historical derivation (6) effectively performs selection and projection on the valid.
time component of attributes by replacing the time-stamp of each attribute of selected
tuples with a new time-stamp.

o Aggregation (A) and unique aggregation (A-0) serve to compute a distribution of
aggregate values over time for a collection of tuples.

After defining the algebra, we discussed ways to extend the algebra to allow time-stamps
with a complex structure, and to support non-first-normal-form historical reiltions.

This chapter makes two contributions. The primary contribution is the algebra itself.
By making appropriate design decisions (i.e, associating valid time with attributes rather
than with tuples, representing valid time as a set of chronons, and requiring that the value
component of attributes bt atomic-valued), we were able to define a historical algebra that
is a relatively straightforward extension of the enapshot algebra. As we show in Chapter 8,
the algebra also has a collection of desirable properties satisfied in concert by no other
historical algebra. The second contribution is the formal definition of the type of object
and the operations on object instances allowed in the algebra. Formal definitions make
the algebra unambiguous. They also are the basis for proving that the algebra has the
expressive power of calculus-based que:y languages and they may be used to prove various
implementations of these languages correct. In Chapter 5 we zhow that the algebra defined
here has the expressive power of the temporal query language TQuel.

We found definition of a historical algebra to be a surprisingly difficult task. Although
it is relatively easy to define an algebra that has a single property, it is much more difficult
to define an algebra that has many desirable properties. We found that many subtle
issues arise when attempting to define an algebra that satisfies several design goals. Also,
all desirable properties of historical algebras are not compatible, as we show in Chapter 8.
Hence, the best that can be hoped for is not an algebra with all possible desirable properties
but an algebra with a ma.'dmal subset of the most debirable properties. The historical
algebra defined here has what we consider to be the most desirable properties of a historical
algebra. In Chapter 8, we review the historical algebras proposed by others, identify a set



of properties desirable of historical algebras, and compare our algebra and those proposed
by others, using the properties as evaluation criteria.

In the next chapter, we extend both the snapshot algebra and our historical algebra
to handle transaction time.



Chapter 4

Adding Transaction Time

In the previous chapter we extended the snapshot algebra to handle valid time by defining a
historical algebra. We did not consider, however, any extension of the snapshot algebra or
our historical algebra to support transaction time. In this chapter we describe an approach
for adding transaction time to both.

Transaction time concerns the storage of information in a database. A database's
scheme describes the structure of the database; the contents of the database must adhere
to that structure (Date 1976, Ullman 1982]. Scheme evolution refers to changes to the
database's scheme over time; contents evolution refers to changes to the database's contents
over time. Hence, a model of transaction time needs to support both scheme evolution and
contents evolution. Conventional DBMS's retain only the current contents of a database
and allow only one scheme to be in force at a time, requiring restructuring (also termed
logical reorganization [Sockut & Goldberg 1979]) when the scheme is changed. This model of
transaction time, although adequate for databases containing only snapshot and historical
relations, is inadequate for databases containing rollback and temporal relations. As we
saw in Chapter 1, rollback and temporal relations must retain past information to support
rollback operations. To model transaction time in databases containing relations of all four
classes, we define an algebraic language for database query and update that allows past
database contents to be retained and accommodates multiple schemes, each in effect for an
interval in the past.

Several benefits accrue from defining a language that extends the algebras to support
transaction time. Although not available in the algebras, the action of update is available in
the language, allowing the language to be the executable form to which update operations
in a calculus-based language (e.g., append, delete, replace in Quel [Held et al. 19751 or
TQuel [Snodgrass 1987]) can be mapped. If these operations in the calculus axe formalized,
the mapping can be proven correct. Secondly, update optimizations, analogous to the
retrieval optimizations that have been studied extensively [Smith & Chang 19751, can now
be investigated in a rigorous fashion. A third benefit is that the database state (i.e., the
database's scheme and contents), and its evolution, are now placed on a formal basis. In
particular, the domain of database states and the change to each state effected by each
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update operation are defined. Of course, actual Implementations will vary considerably in
the physical structures used to encode a database state on secondary storage. However,

the existence of a formal definition of database state allows rigorous statements to be made
concerning the correctness of those structures and the information content of the database.

Another benefit accrues from our approach for adding transaction time to the algebras.

Our approach is general; it depends on no specific technique for adding valid time to the
snapshot algebra. Rather, it is compatible with any such technique. Hence, our approach
can be applied to any historical algebra to yield an algebraic language for the query and
update of temporal databases.

4.1 Approach

The key aspect of the relational algebra is its definition of snapshot state, which models
reality at one time. Similarly, the key aspect of our historical algebra Is its definition of
historical state, which models reality over an interval. Neither algebra, however, is adequate
to model changes in database state because neither has update semantics. We now want to
extend the algebras to support both aspects of transaction time: evolution of a database's
scheme and evolution of its contehits.

We saw in Chapter 1 that a relation's structure cannot be defined in terms of the
relation's attributes alone; it must also be defined in terms of the relation's class. Hence,
we define h, relation's scheme to be a pair consisting of the relation's class and a function,
which we refer to as the relation's signature, that maps the relation's attribute names onto
their value domains. (If the identification of primary keys is desirable, this would also
properly go into the signature.) The relation's contents, which we refer to as the relation's
states, always must be consistent with both the relation's class and the relation's signature.

Our model of transaction time is predicated on two assumptions. First, we amume
that a database may contain snapshot, rollback, historical, and temporal relations. Second,
we assume that the class and signature, a3 well as the contents, of each relation in the
database may change over time. For example, a relation defined initially as a snapshot
relatln could be changed to be a historical, rollback, or temporal relation. Later, it could
be changed to be a snapshot relation once again.

A model of transaction time in a database containing relations of all four classes,
must maintain, for each relation, its current class, signature, and state. The model also
must retain, for each relation, its signature and state for those intervals during which its
class was either rollback or temporal. Hence, we define a relation to be a triple consisting
of a sequence of classes, a sequence of signatures, and a sequence of states, all ordered by
transaction number. The class sequence records the relation's current class and intervals
when the relation's class was either rollback or temporal. Similarly, the signature and state
sequences record the relation's current signature and ftte and all changes in signature and
state during intervals when the relation's class was eith-r rollback or temporal. We also
define a database state to be a function from identifiers (i.e., relation names) to relations.
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Finally, we define a database to be an ordered pair whose first component is a database state
and whose second component is the transaction number of the most recently committed
transaction on the database.

When transaction time is supported by a DBMS, a means of accessing states other
than a relation's current state must be included. A relation's past states when its class was
either rollback or temporal always must be accessible via rollback operations. We define
a new algebraic operator called rollback to make past states available in the algebras.
Fortunately, rollback, like the other algebraic operators, has no side-effects, so it is easily
incorporated into the algebras.

Extension of the algebras to include update semantics, however, poses a fundamen-
tal problem. The algebras by definition are side-effect-free, but the essential aspect of a
database transaction is solely its side-eiTect of changing the database. One awkward but
perhaps feasible solution is to add the database as a parameter to every operator in the al-
gebras. We adopt a different strategy, leaving the basic structure of the algebras intact, and
instead inserting them into a structure of commands that provide the needed side-effects.
Hence, what we are proposing is a language with the algebras, augmented with rollback
operators, as significant components. In doing so, we preserve all the properties of the two
algebras (e.g., commutativity of select, distributZ.vity of select over join), permitting the
full application of algebraic optimizations in expression evaluation.

We define four commands for database update: detinS.ralation, modify.relation,
destroy, and rename.relation. The dof ine..relation command assigns a new class and
signature, along with the empty snapshot or historical state, to an undefined relation. The
nmodify.relation command changes the current class, signature, and state of a defined
relation. The destroy command is the counterpart of the define.relation command.
It either physically or logically deletes from the database the current class, signature, and
state of a relation, depending on the relation's class when the command is executed. The
renamierelation command binds the current class, signature, and state of a relation to
a new identifier. We assume that these commands execute in the context of a single,
previously created database. Hence, no commands are necessary to create or delete the
database. Since we are considering modeling transaction time from a functional, rather than
from a performance, viewpoint, commands affecting access methods, storage mechanisms,
or index maintenance are also not relevant.

Allowing a database's scheme, as well as its contents, to change increases the complex.
ity of our language. If we allow the database's scheme to change, an algebraic expression
that is semantically correct for the database's scheme when one command executes may
not be semantically correct for the database's scheme when another command executes.
We now need a mechanism for identifying semantically incorrect algebraic expressions rel.
ative to the database's scheme when each command executes and a way of ensuring that
the scheme and contents of the database state resulting from the command's execution are
compatible. To identify semantically incorrect expressions, we introduce a semantic type
system and augment all commands to do type.checklng.

Finally, we encapsulate commands within a system of transactions to provide for both
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single-command and multiple-command transactions. A multiple-command transaction,
like a single-command transaction, is treated as an atomic update operation, whether
it changes one relation or several relations. Transactions are specified by the keywords
begin-transaction and either commit -transaction or abort -tranhaction, the later
depending on whether the transaction commits or aborts.

Summarizing these changes, we add

"" the scheme (i.e., class and signature) to the formal definition of database state;

"* the capability to retain selected information about a relation's past by defining a
relation as a sequence of classes, a sequence of signatures, and a sequence of states;

"" a rollback operator to the algebras to access past states;

"* four commands to change the database state;

"* a semantic type system to identify, semantically incorrect algebraic expressions and
enforce consistency constraints between the scheme and contents of the database; and

"* a system of transactions to provide for single-command and multiple-command trans-

actions.

The result is an algebraic language that supports both aspects of transaction time: evolu-
tion of a database's scheme and evolution of its contents.

This language was designed to satisfy several other objectives as well. First, the lan-
guage subsumes the expressive power of the snapshot algebra. For every expression in the
snapshot algebra, there is an equivalent expression in the language. Second, the language
subsumes the expressive of our historical algebra. For every expression in our historical
algebra, there is an equivalent expression in the !anLguage. Third, the language ensures
that all data stored in a relation when its class was either rollback or temporal are retained
permanently and are accessible via a rollback operator, even after the relation is logically
deleted from the database. Fourth, commands change only a relation's class, signature,
and state current at the start of a transaction. Past data that are retained to support
rollback operations, once saved, are never changed. Hence, the language accommodates
implementations that use write-once-read-many (WORM) optical disk to store non-current
class, signature, and state information.

We employ denotational semantics to define the semantics of the language, due to
its success in formalizing operations involving side-effects, such as assignment, In program.
ming languages [Gordon 1979, Stoy 1977]. In defining the semantics of commands and
algebraic operators, we have favored simplicity of semantics at the expense of efficient di-
rect implementation. The language would be ii efficient, in terms of storage space and
execution time, if mapped directly into an implementation. However, the semantics do
not preclude more efficient implementations using optimization strategies for both storage
and retrieval of information. In Section 4.4, we review briefly some of the techniques for
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efficient implementation, compatible with our semantics, that have been proposed by oth-
ers. We also, withcut loss of generality, assume that transactions are executed sequentially
in a single-user environment. Our approach applies equally to environments that permit
the concurrent execution of transactions as long as their concurrency control mechanisms
induce a serialization of transactions.

Our language for supporting the above extensions will be the topic of the next section.
Additional aspects of the rollback operators are discussed briefly in Section 4.3. Section 4.4
will review related work and compare our approach with those of others.

4.2 The Language

In this section we provide the syntax and denotational semantics of our language for data-
base query and update. In denotational semantics, a language is described by assigning to
each language construct a denotation - an abstract entity that models its meaning [Gordon
1979, Scott 1976, SIoy 1977, Strachey 1966]. We chose denotational semantics to define
our language because denotational semantics combines a powerful descriptive notation with
rigorous mathematical theory [Gordon 1979], permitting the precise definition of database
state. First, we define the syntax of the language. Then we define the language's seman-
tic domains and a semantic type system for expressions. Finally, we define the semantic
functions that map the language corstructs onto their denotations.

4.2.1 Syntax

Our language has three basic types of language constructs: programs, commands, and
expressions. A program ia a sequence of ono or more transactions. Both single-command
and multi-command transactions are allowed. Commands occur within transactions; they
change relations (e.g., define a relation, modify a relation, delete a relation). Expressions
occur within commands and denote a single snapshot or historical state. We represent
these three types of constructs by the syntactic categories:

PROO.RAM Category of programs
COMMAND Category of commands

TeA$7?.SS"CAN Category of expressions

We use Backus-Naur Form to specify here the syntax of programs, commands, and
expressions in terms of their immediate constituents (i.e., the highest-level constructs that
make up programs, commands, and expressions). The complete syntax of the language,
including definitions of the lower-level constituents such as identifiers and snapshot states
is given in Appendix C.

P ::= begin.transact:ion C comit.-transaction

I begin.transaction C abort.transaction
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PI ; P2

C define.relation(1, Y, Z) Imodify-relatiouUl, Y', Z', E)

I destroy(I) I rename,..relation(11, 12) i C1 C2

E : snapshot, Z, ]I [historical, Z, H I

I EUE2 1 E--E2 I I xE I r X (E) I arF(E)

E 0C E2 I El -- ,L32 1 E 1 E2 1 * X(E) I & F(E)
16 G, U, :- Vi, .. ,1 . V.) ME

A Ii, W, 1, 13, B (El, E2) A 1, IV, 12, 13, B(El, E2 )

p(I. N) I,(A , N) I E)

Y ::= snapshot I rollbackI historical I temporal

Z'.." Z*

Z (1, : 11,2, .. , I,. : Im,2)

where,

B ranges over the category BY) £LIST
C, C 1, and C 2 range over the cate-gory COMM.AND);
E, El, and E 2 range over the category A'PR)ESSIWAT;
F ranges over the category S,!MA EXP7.ESSQ!O.A of boolean expressions

of elements from the categories TDCIP$N !7t and S77RZMC (i.e., the category
of strings in an alphabet), the relational operators, and the logicid operators;

G ranges over the category MELTA CAfPRCSSIO(K of boolean enpressions
of elements from the categories TIME X'P ,CS$SOAM, the relational operators,
and the logical operators;

H ranges over the category ,-STATE of alphanumeric representations of historical
states in our historical algebra;

I 11, 12, 1,,1, ... , 1 a.2 range over the category TDIAPTV.7S7M of alphanumeric
identifiers;

N ranges over the category AIUMC7AC of decimal numerals;
P, P1, and P2 range over the category PROGRAM;
S ranges over the category S-STATE of alphanumeric representations of snapshot

states;
V ranges over the category TIME EATR.ESSICA of temporal expressions

(i.e., expressions that denote a domain of time values);
Wranges over the category WLA.POW M/ACTTOA[ of aggregation wirndow
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functions;
X ranges over the category TDI.A7.77M. LIST;
Y ranges over the category CLASS of character strings denoting relation classti; and
Z ranges over the category 6,'0A =U7-C of alphanumeric representations

of signatures.

An expression, which evaluates to either a snapshot or historical state, may be a
constant (i.e., an ordered triple consisting of a relation class, signature, and state); an
identifier I, representing the current state of the relation denoted by I; or an algebraic
operator on either one or two other expressions. The allowable operators include the five
operators that serve to define the snapshot algebra and the eight operators that serve
to define our historical algebra. To these, we have added two additional operators, a
rollback operator p and its historical counterpart fi. The rollback operator p takes two
arguments, an identifier I and a transaction number N, and retrieves from the relation
denoted by I the snapshot state current at the time ol transaction N. Similarly, the rollback
operator A retrieves from the relation denoted by I the historical state current at the time
of transaction N.

EXAMPLES. The following are two examples of syntactically correct expressions in the
language. The first is a constant and the second is an expression involving both a rollback
operator and a constant. Their semantics will be specified in Sectionc 4.2.3and 4.2.4.

[snapshot, (suame:string, class:string), (smame:"Phil", claue:"Junior"),
(Sname:"Linda", class:1"senlor"),
(shame: "Ralph", class: "senior")J

ir (hnahao)(p(Rl, 4))X [snapshot, (course: string), (course: "English')]

Note that the alphanumeric representation of a signature includea both the names of at-
tributes and the names of the attributes' value domains. 0

There are four commands in the language. We present here a brief description of each
command, with some examples. The semantics of commands will be defined formally in
Section 4.2.5.

The dof in..relation command binds a class, a signature, and an empty relation
state to an iden• 'Yr I.

EXAMPLE.

define.relation(R1, snapshot, (snama :string, class :string))

Here, the identifier RI is defined to denote a snapshot relation with two attributes, sname
and class. The contents of the relation is, by default, the empty set. 0
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The modify.relation command may change the current clud, signature. or state
of a relation. Command parameters specify the new class, signature, and state. The
special symhol "*" represents. depending on context. either the current class or the current
signature of a relation. It may appear s a parameter in a modify.relation command
to indicate that a relation's new class (or signatura) is simply the relation's current class
(signature), unchanged.

EXAMPLES.

modify.relation(R1, *, [, Evnapshot, (sname:string, class:string),
(shamem "Phil", class: "Junior"),
(sname: "Linda", class: "senior"),
(sname: "Ralph", class: "senior")M)

modify.relation(RP. *, (sname :string, course:striiug),
7r (sname, 'RI) x [snapshot, (course:string),

(course: "English"M))

modify-.relation(R1, rollback, *, RI)

The first command changes the state of the relation denoted by RI but leaves the relation's
clasr and signature unchanged. The second command changes the relation's signature
and state, but not its class. The third command changes only the relation's class, as the
expression R1 evaluates to the current state of the ielatioit. 0

The de3troy command deletes, either physically or iogically, the current class, sig-
nature, and state of a relation, depending on the relation's class when the command is
executed. The rename-relation command renames a relation by binding its current class,
signature. and state to a new identifier.

EXAMPLES.

destroy(RI)

rename.relation(R2, Ri)

Here we first delete the relation denoted by Ri and then rename the relation denoted by
R2 as R1. 0

Programs it our language contain two types of transactions, committed transactions
and aborted transactions. Committed transactions are transactions, which the user ini-
tiates, that eventually commit. Aborted transactions are transactions, which the user
initiates, that for some reason, dictated either by the user or by the system. abort rather
than commit. The semantics of programs will be defined formally in Section 4.2.6.
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4.2.2 Semantic Domains

In our language, a program denotes the database resulting from the execution of one or,
more transactions, in order, on an empty database. By defining thv databbse thpit results
from the execution of an arbitrary sequence of transactions, we specify the aimartics of
that transaction sequence, and hence the semantics of the language. In this sectio•. we will
define formally the fiat domain (i.e, a domain with a trivial partiat ordering [Schmidt 19861)
of databases; later sections will provide the connection beftweeia the syntactic category ot
programs and the semantic domait of databases. All domains introduced are Riat domains
and the notation {...} is used to represent fiat domains.

Assume that we are given the domain V = {DV, ... , V.), where each domain Vu,,
1 <_ u <_ e, is an arbitrary, non-empty, finite or denumerable set. Also, assume that we are
given the domains T and P (7), where each element in 7 represents a chronon and P (7-)
is the power set of 7. Then, we can define the following semantic domains for our language.

7?.4t SAC7ZOA( A-M -= (0, 1....)

A transaction number is a non-negative integer that identifies a transaction that
changes the database. The transaction number assigned to a transaction can be viewed as
that transaction's time-stamp.

Z64CA•'OA/"CC•,SS = {UNDEFINED, SNAPSHOT, ROLLBACK, HISTORICAL, TEMdPORAL}

A relation is either undefined or defined to be a snapshot, rollback, historical, or
temporrd relation.

1REZA7ZON/ SXGA(A7WURC = IVE.V1ZV27CR - VD + f{UNROUND)]

where the notation "+" on domains means the disjoint union of domains. A relation's
signature is a function that maps identifiers either onto a domain A,, 1 < u < e or onto
UN9OUND. If a signature maps an identifier onto UNBOUND, then the identifier is unbound
in that signature (i.e., it :s associated with no domain). If, however, a signature maps an
identifier onto a domain, then that mapping defines an attribute.

SM4PSHOT S'TA7• = Domain of all semantically correct snapshot states (sets of
m-tuples), as defined in the snapshot algebra [Maier 1983], for elements of the
domain TZE47O.•/ S19/VAW7Wt and the domain f{V + .... + V.), where 0
is the empty snapshot state. IHence, a snapshot state s on a relation signature z
is a finite set of mappings from {I I Z(I) $ UNBOUNDI to D, with the restriction
that for each mapping st E 8, st(1) E W!).

XES1"C74i STA71. = Domain of all semantically correct historical states, as de-
fined in our historical algebta, for elements of the domain 7XC.LATtOV SIGA(A-

£t and the domain [{V 1 + . . + V,) x 0 (T)J), where 0 is the empty his-
torical state.
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,4M TOI"= [ 1CAMOK C.CAS x TIMAVACTIO2W " AM .MSIM x

f 7 rL.445oC7T A24M B92 + {-} ]]+ x

[7(E£AT1•Wa' $74A7W,2 x 77.AArSACTrO.A MMVtI' ]* x

S[[U4PSHOT STATC x ,.AbSAC7•O.Af A ,M&7 t ] +

[n6-MrTOICAC 3TA71 x 77-AMSAC2WJV AIZMBe7~ ]

where the special element "-" stands for the present time. A relation is thus an ordered
triple consisting of

* a sequence of (relation class, transaction number, transaction number or "-") triples,

* a sequence of (relation signature, transaction number) pairs. and

* a sequence of (relation state. transaction number) pairs.

Relations are dynamic objects whose class, signature, and state are all allowed to
change over time. For example. a relation defined initially as a snapshot relation could
be modified to be a historical, rollback, or temporal relation. Later, the relation could
be modified to be a snapshot relation once again. Every relation always has at least one
element in its class sequence, the last element recording the relation's current class (i.e.,
undefined, snapshot, rollback, or temporal). Any other elements in the sequence record
intervals when the relation's class was either rollback or temporal.

A relation's signature (state) sequence will be empty only if the relation is currently
undefined and it was never a rollback or temporal relation. If a relation is currently
other than undefined, there is at least one element in its signature (state) sequence, the
last element recording the relation's current signature (state). Any other elements in the
sequence record the signature (state) ot the relation when its class was either rollback or
temporal.

The transaction.number components of all elements, but the last element, in a rela-
tion's class sequence can be viewed as time-stamps defining a fixed, closed interval during
which the element's class component was the relation's class. In contrast. the third com-
ponent of the last element in the sequence is always -1-"; it is used to define an interval of
dynamic length that always extends to the present. The transaction-number component
of each element in a relation's signature (state) sequence can be viewed as a time-stamp
indicating when the element's signature (state) was entered into the database and became
the relation's current signature (state). Since we assume that database changes occur se-
quentially, the transaction-number components of a signature (state) sequence, while not
necessarily consecutive, will be nevertheless strictly increasing. Thus, we can interpolate
on the transaction-number component of elements in a relation's signature (state) sequence
to determine the signature (state) of the relation at any time its class was either rollback
or temporal.
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EXAMPLE. The following is a sample relation. For notational convenience in this and later

examples, we show only the attribute portion of a signature (i.e., the partial function from
attribute names to value domains). Each signature maps all identifiers not shown onto
UNBOUND. Also for notational convenience, we assume the natural mapping from attribute
names onto attribute values for each tuple (e.g., (ename - "Phil", 3sn -. 250861414)).

class signature state
((ROLLBACK, 2, 6), (((snams -. string, ((0, 2),

sun - integer), 2),

({M"Phil", 250861414),
("Linda", 147894290),

("Ralph", 459326889)}, 4),

((snams - string, ({("Phil", "junior"),

class - string), 5), ("Linda", "8seaior ),

("Ralph", "senior")), 5),

(SNAPSHOT, 8, -) ((sun - integer, ({(250861414, "junior"),

class - string), 8) (147894290, "senior"),

) (459326889, "senior")), 8))

The relation shown here was defined to be a rollback relation by transaction 2 and remained

a rollback relation through transaction 6. While the relation was a rollback relation, all

changes to its signature and state were recorded; its state was changed by transaction 4 and

both its signature and its state were changed by transaction 5. Transaction 7 redefined the

relation's class avkd the relation was last updated as a snapshot relation by transaction 8.

Only when a relation's current class is either rollback or temporal is the relation treated

as an append-only relation. In all other cases, updates cause outdated information to be
discarded. Hence. the lack of information about the relation's class. signature, and state

before transaction 2 and at transaction 7 implies that the relation was either undefined or

a snapshot or historical relation at those times. Note that this relation can be rolled back

only to transactions 2 through 6. Also note that the last element in the class sequence

defines the relation to be a snapshot relation from transaction 8 to the present. 0

DATABASE STATE = ZNEITI. E - 1•S.ATIO"

A database state is a function that maps each identifier onto a relation. If an identifier

I is mapped onto a relation whose current class is UNDEFINED, then I denotes an undefined

relation. In the empty database state, all identifiers map onto undefined relations (i.e,

(((UNDEFINED, 0, -)), ( ), ( ) )).

DATABASE = DATABASE STAnT x 7TrA.ANSACT7O, M4MSt,• f

A database is an ordered pair consisting of a database state and the transaction

number assigned to the most recently committed transaction on the database state (i.e.,
the last transaction to cause a change to the database state).
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4.2.3 A Semantic Type System for Expressions

Before specifying the semantics of the expressions defined syntactically in Section 4.2.1,
we introduce a semantic type system for expressions. All syntactlcally correct expressions
in our language are not necessarily semantically correct. An expression is semantically
correct, with respect to a dttabase state and a command, only if its evaluation on the
database state during the command's execution produces either a snapshot or a historical
state. Also, if the expression contains a rollback operator, it must be consistent with the
class and signature of the relation being rolled backed at the time of the transaction to
which the relation is rolled back. Because the class and signature, as well as the state, of a
relation are allowed to change over time, the semantic correctness of expressions also can
vary over time. Hence, expressions that are semantically correct on a database state when
one command is executed may not be semantically correct on the same database state
when a subsequent command is executed (although the correctness of rollback operations
to existing states will be unaffected by subsequent commands).

The semantic type system defined here allows us to do expression type-checking in-
dependent of expression evaluation. In Section 4.2.4. where we define the semantics of
expressions, we will use the type system to restrict evaluation of expressions to semanti-
cally correct expressions only. Hence, any future implementation of the language can avoid
the unnecessary cost associated with attempted evaluation of semantically incorrect ex-
pressions. The type system will also be used to define the semantics of commands so that
commands whose execution would result in an incompatibility among a relation's class,
signature, and state will never be executed. Also, separation of semantic type-checking
and evaluation of expressions simplifies the formal definitions of the semantics of both ex-
pressions and commands. Note that while semantic type-checking and evaluation of some
expressions (i.e., those expressions involving only constant expressions and rollback opera-
tors that roll back a relation prior to the query analysis time) can be done when a query
ia analyzed, most semantic type-checking and expression evaluation will have to be done
when the query is executed.

Semantically correct expressions in our language evaluate to either a single snapshot
state or a single historical state. We define a snapshot state's type to be an ordered pair
whose first component is SNAPSHOT and whose second component is the state's signature.
Similarly, we define a historical state's type to be an ordered pair whose first component is
HISTORICAL and whose second component is the state's signature. A semantically correct
expression's type is therefore the class and signature of the relation state resulting from the
expression's evaluation and two expressions are said to be of the same type if and only if
they evaluate to either snapshot or historical states on the attributes of the same signature.

We use the semantic function T to specify an expression's type. A semantic function is
simply a function that maps a language construct onto its denotation or meaning. T defines
an expression as a function that maps a database state and a transaction number onto either
an ordered pair or TYPEERROR, depending on whether the expression is a semantically
correct expression on the database state when a command in the transaction assigned the
transaction number is executed. The ordered pair will have as its first component either
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SNAPSHOT or HISTORICAL and as its second component the signature of the relation state
that the expression represents. Hence, T defines the type denotation of expressions in our
language.

T : AP7rZ(SSIOA( - (t rZATABAS& STJth x 7MAVSACTIQA A7UM am] -

[( (SNAPSHOT, IISTORICAL} X

£.&ATrOAf S•9IQ•K72?] + fTYPEERROR)]]

The result of type-checking a syntactically correct expression is the class and signature of
the relation state that the expression represents if the expression is semantically correct
and an error if the expression is semantically incorrect. An expression's type may depend
on a database state's contents. The type of an expression involving a rollback operator also
depends on the transaction number of the transaction in which the command containing
the expression occurs. Hence. a database state and transaction number together define the
environment in which type.checking is performed.

Before defining the semantic function T, we describe informally several functions used
in its definition. Formal definitions for these auxiliary functions appear in Appendix B.

H is a semantic function that maps each alphanumeric representation of a historical state
in the syntactic category 7R-STATE onto its corresponding historical state in the
semantic domain 1-S'TO1?ZCAL STAfT, if it denotes a valid bistorical state on a
given signature. Otherwise, H maps the histcrical state onto ERROR.

N is a semantic function that maps the syntactic category A7JA7.CAI of decimal numerals
into the semantic domain I.V7MGV of integers.

S is a semantic function that maps each alphanumeric representation of a snapshot state in
the syntactic category -S-TATt onto its corresponding snapshot state in the semantic
domain SA'.APS"7-ffT ST.lT7', if it denotes a valid snapshot state on a given signature.
Otherwise, S maps the snapshot state onto ERROR.

VALIDB is a semantic function that maps the alphanumeric representation of a list of
identifiers in the syntactic category By LST onto the boolean value TRUE or FALSE,
to indicate whether the identifiers denote a valid subset of the attributes in a given
signature.

VALIDF is a semantic function that maps the alphanumeric representation of a boolean
predicate in the syntactic category S2"GMA MYCP7.SItOA onto the boolean value
TRUE or FALSE. to indicate whether the predicate is a valid boolean predicate for the
selection operator a (or &) and a given signature.

VALIDG is a semantic function that maps the alphanumeric representation of a temporal
predicate in the syntactic category DELTA CATRE,'SSIOA" onto the boolean value
TRUE or FALSE. to indicate whether the predicate is a valid temporal predicate for the
derivation operator 6 and a given signature.
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VALIDV is a semantic function that maps the alphanumeric representation of a set of

assignments in the syntactic category 7TME LIST onto the boolean value TRUE

or FALSV, to indicate whether the assignments denote valid pairs of attributes and
temporal expressions for the derivation operator 6 and a given signature.

VALIDW is a semantic function that maps the alphanumeric representation of an aggre-

gation windowing function in the syntactic category )'V/'DOW R /CT-r2TOA" onto
the boolean value TRUE or FALSE, to indicate whether the function denotes a member
of an arbitrary semantic domain of aggregation windowing functions.

VALIDX is a semantic function that maps the alphanumeric representation of a list of
identifiers in the syntactic category ITAP7.•7l. " LIST onto the boolean value TRUE

or FALSE, to indicate whether the identifiers denote a valid subset of the attributes in
a given signature.

X is a semantic function that maps the alphanumeric representation of a list of identifiers in
the syntactic category YVEKA/7. " LUST onto an element in 60 (LV'tA1'1.TICX),
the power set of 2PAV72".Y1C, if the identifiers denote a valid subset of the attributes
in a given signature. Otherwise, X maps the list onto ERROR.

Y is a semantic function that maps each character string in the syntactic category CLASS
onto the relation class that it denotes in the semantic domain 1"CCAT"OKA CLASS.

Z is a semantic function that maps each alphanumeric representation of a relational signa-
ture in the syntactic category STOMA/7U7ra onto its corresponding relational signature

in the semantic domain 7"2.6CA7TOA" SI"sjVA7W?&.

FindClass maps a relation onto the class component of the element in the relation's class
sequence whose first transaction-number component is less than or equal to a given
transaction number and whose second transaction-number component is greater than
or equal to the transaction number. If no such element exists in the sequence, then
FindClass returns ERROR.

FindSignatwre maps a relation onto the signature component of the element in the relation's
signature sequence having the largest transaction-number component less than or
equal to a given transaction number, if FindClass does not return an error for the
same transaction number. If FindClass returns an error or no such element exists in
the sequence, then FindSignature returns ERROR.

LastClass maps a relation onto the class component of the last element in the relation's
class sequence. If the sequence is empty, LastClass returns ERROR.

LastSignature maps a relation onto the signature component of the last element in the rela-
tion's signature sequence. If the relation's signature sequence is empty, LastSignature
returns ERROR.

We now define formally the semantic function T for each kind of expression allowed
in our language. For this and later definitions of semantic functions, let e be the number
of value domains V,, I < u < e, and let
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d range over the domain DATABASE STA7r.
z, zi, and z2 range over the domain 7 A71ATOM SXQ.A4M.A7E. and
tn range over the domain 77•.ASAC7TIO AUI.WAt7.

TgEsnapshot, Z, SI]I(d, tn) = if (ZIZJ 0 ERROR A S$IS]Z[ZI 0 ERROR)

then (SNAPSHOT, ZIZD)

else TYPEERROR

TjEhistorical, Z,/H]j(d, tn) = if (ZIZJ 0 ERROR A HJH]IZIZ] 4 ERROR)

then (HISTORICAL, Z[Z])

else TYPEEkROR

If a constant expression represents a snapshot state on a signature, the expression's type
is the ordered pair whose first component is SNAPSHOT and whose second component is
the snapshot state's signature. If a constanc expression represents a historical state on a
signature, the expression's type is the ordered pair whose first component is HISTORICAL

and whose second component is the historical state's signature. Otherwise, evaluation of
the expression's type results in an error.

EXAMPLE. For this and later examples in Section 4.2, assume that we are given the
database (DS, 8) where the database state DS maps the identifier R1 onto the relation
shown in the example on page 62.

TE•[snapshot, (sname:string, class:string), (sname:"Phil", class:"Junior"),
(smame: "Linda", class: "senior"),
(sname: "Ralph", class: "senior")]

I (DS,9) = (SNAPSHOT, (sname -, string, clase -- string))

Here we assume that type-checking is being performed as part of transaction 9. Note. how-
ever, that the database state'is not consulted to determine the constant expression's type;
the expression's type is independent of the database state. Actually, the only expressions
whose type depends directly on the database state are identifiers and expressions involving
the rollback operators. C

Evaluation of a snapshot constant's type produces an error if and only if the expression
does not represent a snapshot state on a signature. As we will see in Section 4.2.4, evalu-
ation of a constant expression's type produces an error under exactly the same conditions
that evaluation of the expression produces an error. This relationship between a constant
expression's type and value is both a necessary and a sufficient condition to ensure that
the evaluation of any expression will result in an error when evaluation of the expression's
type results in an error.
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T1l] (d, tn) if (Last Class(d(I)) = SNAPSHOT

V LastClass(d(1)) = ROLLBACK)

then (SNAPSHOT, LastSignature(d(I)))

else if (La.stClass(d(I)) = HISTORICAL

V LastClass(d(I)) = TEMPORAL)

then (HISTORICAL, LastSignature(d(I)))

else TYPEERROR

where the notation d(I) stands for the relation denoted by the identifier I in the database
state d. The type of an expression I is the ordered pair whose first component is SNAPSHOT

if I's current class is either snapshot or rollback and HISTORICAL if its current class is
either historical or temporal. The ordered pair's second component is always I's current
signature. An error occurs if the relation is curre'.1tly undefined.

EXAMPLE.

T[R11 (DS, 9) = (SNAPSHOT, (isn - integer, class -, string))

T[EIUE 2}](d, tn) = if T(Ell(d, tn) = TE 21(d, tn) = (sN4PSHOT. z)

then T[E1•J(d, tn)

else TYPEERROR

T[EI-E~l(d, tn) = if T[E1 J(d, tn) = TIE21(d, tn) = (SNAPSHOT. z)

then T[EtI(d, tn)

else TYPEERROR
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TJE 1 X E21 (d, tn)

if (T[E1J(d, tn) = (SNAPSHOT. Z-1 ) A TIE21(d, tn) = (SNAPSHOT, Z2)

AVI, I E TgtVT"I.727.(, (-1(I) = UNBOUND V Z2(I) = UNBOUND))

then (SNAPSHOT, {((, VJ) 11 _< u < e A ((I, V,) E ZZ V (1, 7),) E z2)}

U {(I, UNBOUND) I I E IDEI TY,&'M A (I, UNBOUND) E Z,

A (1, UNBOUND) E Z21})

else TYPEERROFR

T.\rX(E)J(d, in) =

if (T[E) (d, tn) = (SNAPSHOT, Z) A VALIDX[X] z)

then (SNAPSHOT, ((I, DV) I I E X[XJ Z A 1•. U i< e A (1, V•) E z}

u 1(r, UNBOUND) jI • X[XJz A I e TDeA/J"T•..P'Z})

else TYPEERROR

T~oF(E)J(d, tn) = if (T[E](d, tn) = (SNAPSHOT, z) A VALIDF[Fjz)

then T[EJ (d, tn)

else TYPEERROR

The type of an expression involving one of the five basic snapshot operators is an ordered
pair whose first component is SNAPSHOT and whose second component is the signature
of the relation state produced when the expression is evaluated, if two conditions are
met. TLe first component of the type of all subexpressions must be SNAPSHOT and the
second component of the type of all subexpressions must be a signature satisfying any
restrictions placed on the signatures of relation states in corresponding expressions in the
snapshot algebra. For example, our definitions of union and difference require that the
signatures for E, and E2 be identical while our definition oi cartesian product requires
that the attributes defined by the signatures for E, and E2 be disjoint. (Note that we can
eliminate this last restriction and effectively allow the cartesian product of snapshot states
on arbitrary signatures through the introduction of a simple attribute renaming operator
[Maier 1983] into the language.) If either condition is not met, evaluation of the expression's
type results in an error.
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T~p(l, N)j (d, tn) if NINE < tn A FindClass(d(I), NINI) = ROLLBACK

then (SNAPSHOT, FindSignature(d(I), N[ND))

else TYPEERROR

A rollback expression's type is the ordered pair whose first component is SNAPSHOT and
whose second component is the signature of the relation denoted by I when transac-
tion N[N) was processed, if the relation was a rollback relation at that time. Other-
wise, evaluation of the expression's type results in an error. Because we assume sequential
transaction processing, tn is the transaction number of the one active transaction and
all transactions with a transaction number less than tn are committed. Hence. we allow
rollback only to committed transactions.

L EXA MPL ES.

T~p(RI ,4)0(DS,9) = (SNAPSHOT, (sname - string, ssn - integer))

TI-(sname) (p(R1, 4)) (DS, 9) = (SNAPSHOT, (sname - string))

Twir(sname) (p(RI, 4)) x [snapshot, (course: string), (course: "English")]
I- (DS, 9) = (SNAPSHOT, (shame - string, course - string))

We now present the definitions of the semantic function T for expressions involving
historical operators. The type denotation of an expression involving a historical operator
is defined identically to that of an expression involving an analogous snapshot operator (if
one exits), with the exception that HISTORICAL and TEMPORAL are substituted for SNAPSHOT
and ROLLBACK, respectively.

TIE CJ E21 (d, in) = if TIEi]J (d, in) = TI[ 21 (d, tn) = (HISTORICAL, Z)

then T[EJ (d, in)

else 'rYPEERROR

TjEi - E 2j(d, tn) = if T[EI(d, in) = rIE 21](d, in) = (HISTORICAL, Z)

then T[EIJ(d, in)

else TYPEERROR
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"TIE•E >;E 2](d, tn) =

if (T[Eu] (d, tn) = (HISTORICAL. z-I) A T[E2 i(d, in) = (HISTORICAL, Z.2)

AV1, I E 2•Y•.•DM .IZY , (Zl((I) = UNBOUND V Z2(1) = UNBOUND))

then (HISTORICAL.{(I, Du) I11 < u <_ e A ((I, Vu) E z1 V (1, Vu) E z2)}

U {(I, UNBOUND) I I E IDV.A(J7)T7 A (I, UNBOUND) E zi

A (I, UNBOUND) E Z2 })

else TYPEERROR

Tj*X(~j~din) =

if (T[E'](d, tn) = (HISTORICAL. -) A VALIDX[Xiz)

then (HISTORICAL, {(I, DV) I I E X[Xj z A I < u _ e A (1, Du) E z

U {(f, UNBOUND) I 10 X [X]z A I E ZVDCNVTT". })

else TYPEERROR

Tir&F(E)j(d, in) = if (TIE](d, in) = (mSTORICAL, z) A VALIDF[Flz)

then T[E] (d, in)

else TYPEERROR

T16G, (11 :- Vi,..., Im :=Vmn)(E)](d, tn) =

if (TIE] (d, in) = (HISTORICAL, Z)

AVALIDG[GJZ A VALIDV[(Ii :aVF, ... ,I :uVm)lz)

then T[Ej(d, in)

else TYPEERROR
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TI; II, TV, 12 13.B(EI, E1(d, in) =

if (TIE1,](d, in) = (HISTORICcAL. z) A TIE21(d, in) = (HISTORICAL. Z2)

AZ1 9 Z2 A VALIDB[BE zI A 12 E Z1 A 13 0 z1

A VALIDSA1 1 ] # ERROR A VALIDW[ W• $ ERROR)

then (HIsTORICAL, B(B z, U {13})

else TYPEERROR

where, we assume that VALIDSA is a semantic functir- ,.. k t(etermji s whether an
identifier maps onto the name of an aggregate family in an arbitrary iimn of scalar
aggregate families.

TýAU I1,, IV, 1,, 13, B1(E,,E,2 ) I (d, tn) =

if (TIE11(d, in) = (HISTORICAL. Zl) A TIIE 21(d, tn) = (HISTORICAL. Z2)

A z, C- Z2 A VALIDB[Bj zI A 12 E z, A 13 0 zI

A VALIDSA1II]j @ ERROR A VALIDW[ W1 # ERROR)

then (HISTORICAL, BIB] z, U {13})

else TYPEERROR

TfLj(1, N)] (d, tn) = -f N[Nj < in A FindClass(d(l), NýN]) = TEMPO",Al,

then (HISTORICAL. FindSignature(d(1), NIINi))

else TYPF-RROR

Finally, we present the definition of the semantic function T for the last expression
construct, which is used to group subexpressions.

TI(E)](d, in) = T[E](d,tn)

4.2.4 Expressions

The semantic funct'ov E defines the denotation of expressions in our language. E defines
an expression as a function that maps a dtabue state and a transaction number onto
either a snapshot state (i.e. an element of the ,.NAPI. NOT S.AT7 semantic domain), a
historical state (i.e., an element of the 7(TS"It1 C., STA57 semantic domain), or E,"1oR.
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E : XP SSZOA - [[*DATASAS` STA7" x nWAAV'SACTTOA" AUA'M R ]6--

[Sf APS•7•OT $T7A7 + hIS 7I0UCA S7ATC + {ERROR}]]

If an expression is a semantically correct expression on a databa". state, expression evalu.
ation on the database state produces either a snapshot state or a historical state. Other-
wise, expression evaluation produces an error. The environment for expression evaluation,
a database state and the transaction number of the active transaction, is the same as that
for expression type-checking. Note that expression evaluation has no side-effect; it leaves
the database state unchanged.

Before defining the semantic function E, we describe informally additional auxillary
functions used in E's definition. Formal definitions for these functions appear in Ap-
penidix B.

B is a semantic function that maps the alphanumeric representation of a list of identifiers in
thc syntactic category BY LTST ontu an element in •9 (ZVA'IDVEA 1 "fCR), the power
set of TDSM217"CR, if the identifiers denote a valid subset of the attributes in a
given signature. Otherwise, B maps the list onto ERROR.

F " -i ,amanir: f*1nction that maps the alphanumeric representation of a boolean predicate
in the syntacv, -, catw,•' - SIOMA CXT1ZESSTOMA onto its corresponding boolean
predicate in the sewantic dorueln SI£CZ7OKV" P7hCDZCA2', if it denotes a valid
boolean predicate for the setectiun ciper•,-.tc cr (or &) and a given signature. Otherwise,
F maps the expression onto ERROR.

G is a semantic function that maps the alphanumeric representation of a temporal predicate
in the syntactic category PCCT.A £XP7ZSSYOA/ onto its corresponding temporal
predicate in the semantic domain D1ZI'AlOK" P1WEDIC.AT", if it denotes a valid
temporal predicate -for the derivation operator 6 and a given signature. Otherwise. G
maps the expression onto ERROR.

V is a semantic function that maps the alphanumeric representation of a set of assignments
in the syntactic category 7I"MC LIST onto its corresponding set of ordered pairs
in the semantic domain P ( TDE&A TVTC x 7.MPOIZAi £.:7PYSSIC'Af), if all
the assignments denote valid pairs of attributes and temporal expressions for the
derivation operator 6 and a given signature. Otherwise, V maps the assignment onto
ERROR.

W is a semantic function that maps the alphanumeric representation of an aggregation
windowing function in the syntactic category WL&T'OW .7•.,C0T"A( onto an ele-
ment in the arbitrary semantic -lomain A(71£'OQ.47"0At nTJAPOW YUsVC/CIOMf, if
the function denotes a member of this semantic domain. Otherwise, W maps the
function onto ERROR.

FindState maps a relation onto the state component of the element in the relation's state
sequence having the largest transaction-number component less than or equal to a
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given transaction number, if FindClass does not return an error for the same transac-
tion number. If FindCla. returns an error or no such clement emists in the sequence.
then FindState returns ERROR.

LastState maps a relation onto the state component of the last element in the relation's
state sequence. If the relation's state sequence is empty, LastState returns EaROa.

We now define formally the semantic function E for each kind of expression allowed
in the language.

EJlsnapshot, Z, S]J(d, tn) = if TICsnapshot, Z, S)]J(d, in) # TYFEERROR

then S[S]jIZIj

else ERROR

ElI[historical, 7. IT II(d, tn) = if TIEhistorical, Z, H]J(d, in) 0 TYPEERROR

then HIHJ•HZJ

else ERROR

EXAMPLE.

El[snapshot, (aname: string, class : string), (sname: "Phil", class :"Junior"),

(sname: "Linda", class:"senior"),
(smame: "Ralph", class: "senior")]

] (DS, 9) = { ("Phil", "junior"), ("Linda", "senior"), ("Ralph". "senior"))

0

Ell] (d, tn) = if T[1] (d, £n) /- T.coper,.nnoa tLeh ";..) 5.'tate(d(il) else ERROR

An identifier expression, if semantically correct, always evaluates to the current state of
the relation denoted by I.

EXAMPLE.

E(R I1 (DS. 9) = { (250861414. "junior"), (147894290, "senior"), (459326889, "senior") }

0•
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EIE 1UE 2](d, in) = if T[EIUF'21 (d. tin) j TYPEERROR

then EI[Ei•(d, tn)UE(E2D(d, tn)

else EkROR

E[EI-E 2-(d, tin) = if T[E1 -E 21(d, tn) 0 TYPEERROR

then E[EjI (d, t n) - EIE21 (d, tn)

else ERROR

EIEi xE 2]1(d, t n) = if TIE, xE 2D (d, in) $ TYPEERROR

then EI[E]I (d, tn) x EIE2D(d, tn)

else ERROR

EjrX(E)j(d, tn) = if T[1rX(E)j(d, in) = (SNAPSHOT, Z)

then 7rX[XlI (E[E] (d, t n))

else ERROR

l[o" F(E)M(d, in) = if T[rF (E)j(d, in) = (SNAPSHOT, Z)

then aOF[Fj,(E[EI(d, in))

else ERROR

For each of the five snapshot operators, the denotation of a semantically correct expression
containing the operator is defined as the standard snapshot operator over the denotation
of the argument(s) to that operator.

E[p(I, N)j(d, tn) = if Tp(I, N)](d, tn) 4 TYPEERROR

then FindState(d(l), NIN])

else ERROR

A semantically correct rollback expression evaluates to the snapshot state of the relation
denoted by I at the time of transaction N(N]. The rollback operator always rolls a
relation backward, but never forward, in time. Because transactions always update the

database as they are executed, it is impossible to roll a relation forward in time. Although
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relations can't be rolled forward in time, our orthogonal treatment of valid and transaction
time provides support for both retroactive changes and postactive changes (i.e., changes
that will occur in the future) [Snodgrass & Ahn 1985]. Recall from the definition of the
semantic function T that a rollback expression is semantically correct only if the relation
was a rollback relation when the transaction was processed.

EXAMPLES.

Ejp(R1,4)](DS,9) =

{ ("Phil", 250861414), ("Linda", 147894290), ("Ralph", 459326889) }

Ejr(sname) (p(RI, 4))] (DS, 9) = I ("Phil"), ("Linda"), ("Ralph") }

E[r, (sname) (p(R1, 4)) XC snapshot, (course:string), (course: "English")]
](DS. 9) = (("Phil", "English"), ("Linda". "English"), ("Ralph", "English") }

3

We now present the definitions of the semantic function E for expressions involving
historical operators. The denotation of an expression involving a historical operator is
defined identically to that of an expression involving an analogous snapshot operator (if
one exits).

EIE1 Cj E2 3 (d, in) = if T[E1 0 E21 (d, tn) 5 TryPERRoaindexhistorical operators!union

then E[EjI (d, tn) 0 E[E 2] (d, in)

else ERROR

EIE, E2J(d, tn) = if TIE1 A E2](d, in) 9 TYPEERROR

then E[EjI(d, tn) " E[E2•(d, tn)

else ERROR

E[EI E L£j(d, tn) = if TIE1 x< E2j(d, tn) 7 TYPEERROR

then E[EjI(d, tn) k E[E2J (d, in)

else ERROR
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Ej[* X ME)(d, In) = if TI* XME) (d, In) = (HISTORICAL, Z)

then f'X(Xl,(E[Ei(d, tn))

else ERROR

E& F(E)J (d, In) = if TI[& F(E)] (d, tn) = (HISTORICAL, Z)

then &F[Fi,(EIE](d, In))

else ERROR

Eo6G, (11: V,..., I:, V,m)(E)I(d, in) =

if TI[6G, (/1 :u V1, ... ,nm:u Vm)(E)I(d, In)= (HISTORICAL. Z)

then iGI1l1,v[(,,:mV,...,muVm)iz(EE(d, tn))

else ERROR

E[J I , IV, I2 . 13, B (EI,E 2 ) I(d, In) =

if TII, W, W1, 13, B (ElE 2 ) J(d, in) = (HISTORICAL, Z)

then AsAIII,W(WI,.12 .,1.B(Bjz(EIEII(d, tn), E[Ea](d, in))

else ERROR

where, we assume SA is a semantic function that maps identifiers onto the aggregate family
that they nrame in an arbitrary domain of scalar aggregate families.

E[A-& r, ,IV, 12 . 13, B (EI, E2 ) ] (d, tn) =

if T[AW1 11, TV, 12, 13, B (E,, E 2 ) I(d, In) = (HISTORICAL, Z)

then AT7 UA(IIJ,WIWJ, , ,,BB j(E[El] (d, In), EIE]I (d, in))

else ERROR

ELW(l, N)j(d, in) = if T[((I, N)j(d, In) o TYPEERROR

then FindState(d(J), NINI)

else ERROR

We now present the definition of the semantic function E for the expression construct
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that groups subexpressions.

EI(E)I(d, tn) = E[E](d,tn)

4.2.5 Commands

The semantic function C defines the denotation of commands defined syntactically in Sec-
tion 4.2.1. C defines a command as a function that maps a database state and a transaction
number onto a database state and a status code. Execution of a semantically correct com-
mand produces a new database ctate and the status code OK, indicating that the command
was successfully executed. Execution of a semantically incorrect command produces the
original database state unchanged and the status code ERROR, indicating that the command
could not be executed.

C : CO.M M[AAD [ DATABASE STAT7 x TIZA.ISAMC'O. AIUM Bn --

[DATABASE STA7" x {oK, ERROR) ]

The environment for command execution is the same as that for expression type-checking
and evaluation, a database state and the transaction number of the active transaction (i.e.,
the transaction in which the command being executed occurs). A command produces a
new database state from the given database state by changing a relation.

We use semantic type-checking of expressions in the definition of C to restrict eval-
uation of expressions to semantically correct expressions only. We also incorporate error-
checking, based on the type system for expressions, into C's definition to guarantee con-
sistency among a relation's class. signature. and state following update. Error-checking
ensures that commands actually change relations only when the change would result in a
relation with compatible class, signature, and state. Commands whose execution would re-
sult in an inconsistency among a relation's class, signature, and state are effectively ignored
(i.e, they do not alter the database state).

Before defining the semantic function C, we describe informally several functions used
in its definition. Formal definitions for these functions appear in Appendix B.

Y' is the same as the semantic function Y with the exception that it maps the special

symbol * onto a relation's current class.

Z' is the same as the semantic function Z with the exception that it maps the special
symbol * onto a relation's current signature.

Consistent is a boolean function that determines whether a class and signature are consis.,
tent with an expression's type.

MSoT (Modified Start of Transaction) is a function that maps a relation and a transaction
number onto the history of the relation as a rollback or temporal relation prior to the
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start of the transaction assigned the transaction number. We refer to this history
as the relation's MSoT for that transactien. The significance of MSoT will become
apparent when we discuss multiple-command transactions.

EXAMPLE. Again assume, as in earlier examples, that we are given the database (DS, 8)
where the database state component maps the identifier R1 onto the relation shown in the
example on page 62.

MWoT(R1, V)

class signa :ure state
((ROLLBACK, 2, 6) (((sanme - string, ((0, 2),

son -. integer), 2),

({("Phil", 250861414),
("Linda". 147894290),
("Ralph", 459326889)), 4),

((sname -, integer, ({("Phil", "junior"),
class -- string), 5) ("Linca", "senior"),

) )_ ("Ralph", "senior")}, 5)

In this example, AMSoT retains Ri's history as a rollback relation prior to transaction 9.
Although RI's current class, signature, and state were recorded before the start of trans-
action 9, they have been discarded because they are not part of Al's history as a rollback
relation. If, however, the last element in Rl's class sequence had been (ROLLBACK, 8, -),
then Ri's current chess, signature, and state also woudd have been retained. In this case.
MSoT simply would have changed the second transaction-number component of the last
element in Ri's class sequence to 8 to indicate that the resulting relation only records Ri's
history as a rollback relation through transaction 8. If Ri had never been a rollback or
temporal relation, then MSoT would have mapped Ri outo ( ( ), (), ( )). 3

Expand replaces the second transaction-number component in the last element of a rela-
tion's MSoT class sequence with the special element "-"'. Expand has the effect of
making the length of the interval for the class component of this element dynamic,
extending to the present.

NewSignature maps a relation's MSoT and a (signature, transaction number) pair onto the
empty sequence, if the signature in the last elemrnt of the relation's MSoT signature
sequence is equal to the signature in the (signature. transaction number) pair, or a
one-element sequence containing the (signature. transaction number) pair, oth'-x wise.

NetoState maps a relation's MSoT, a (relation state, transaction number) pair, and a (class,
signature) pair onto the empty sequence. if the class and signature in the last elements
of the relation's MSoT class and signature sequences are consistent with the (class.
signature) pair and the state in the last element of the relation's MSoT state sequence
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is equal to the relation state in the (relation state, transaction number) pair. or a one-
element sequence containing the (relation state. transaction number) pair, otherwise.

We define formally the semantics of commands using the same approach we used to
define the semantics of expressions. We define the semantic function C for each kind of
command allowed in the language. In each of the following definitions, the predicate spec-
ifies the conditions under which the command is executed. If these conditions hold, a new
database state is produced and the status code OK is returned; otherwise, the database
state is left unchanged and the status code ERRoR is returned. The conditions specified in
each definition are both necessary and sufficient to ensure that only semantically correct
expressions are evaluated and that the class, signature, and state of each relation in the
database state following execution of the command are consistent. In all five definitions
we assume that if a,, a2, a3, bh, b2, and b3 are all sequences, then (al, a2, a3)13 0(b1, b2 , b3 )

denotes the triple (a, 11 bl, a2 11 b2, a3 1 b3), where 111" is the concatenation operator on se-
quences. Also, the notation d[ r/I] stands for a new database stahte that differs from the
database state d only in that it maps the identifier I onto the relation r.

Defining a Relation

The def ihe.relation command assigns to a relation, whose current class is UNDEFINED,

a new class and signature and the empty relation state consistent with the new class. The
assignment becomes effective when the transaction in which the command occurs is com-
mitted. The changes that the command makes to the relation to effect this assignment
depend on the relation's current class; the last class, signature, and state, if any, in the
relation's MSoT for the transaction in which the command occurs; and whether the new
class is a single-state class (i.e., SNAPSHOT or HISTORICAL) or a multi-state class (i.e., RtOLL-

BACK or TEMPORAL). We hereafter refer to the last class, signature, and state in a relation's
MSoT, if present, as the relation's MSoT class. signature, and state, respectively. The ac-
tions performed by the define.srelation command, for all possible combinations of these
variables, can be reduced to the three cases shown in Table 4.1.

If the relation's current class is UNDEFINED, the def ine.relation command replaces
the relation with its MSoT, augmented to include the new class, signature, and state. If
the new class represents a non-disjoint extension of the relation's MSoT class, the interval
assigned the MSoT class is extended (i.e., made into a dynamically expanding interval
by changing the second transaction-number component to "-") to include the transaction
in which the command occurs. This case is limited to define.selation commands in
multiple-command transactions, which we discuss at the end of this section. Otherwise,
the new class is appended to the MSoT class sequence. In either case, a new signature
(state) is added to the MSoT signature (state) sequence only if it differs from the MSoT
signature (state). If the relation's current class is other than UNDEFINED, the command
encounters an error condition and leaves the relation unchanged.

The formal definition of def.ine.relat ion follows directly from Table 4.1.



80

Current Class New Class

SingIaatCuiass MultiStatlCas
1

Extend MISoT
New Clas Append to MSoT,

Extends Not Applicable if Changed
MSoT Class Append to MSoT,

if Changed
Undethmod--

SAppend to MSoT Append to MdoT
New Class Append to MSoT, Append to MhoT,

Does Not Extend if Changed if Changed
MSoT Class Append to MSoT, Append to MSoT,

if Changed if Changed

SingleStateClass 3 Error Error

Multistateclauu 1 Error Eor

Table 4.1: Define Relation Command

C[def ne.relacion(l, Y, Z)] (d, tn) =

if (M = MSoT(d(I), in) A LastClasa(d(I)) = UNDEFINED

AY(YJ Y] ERROR A ZI[ZI # ERROR)

then if FindClasu(M, in - 1) = Y(Y]

then (d [ (Ezpand(Af 113 ((), NewSignature(M, (Z[Z], in)),
NetoState( M, (0, tn ), (Y[Y], Z(Z])))

)/I], OK)

else (d[(M113 (((Y[Yj, tn. -)), NetwSignature(M, (Z(Zj, tn)),

NewState(M, (0, in), (Y[Y], Z[Z])))

-)/], OK)

else (d, ERROR)

where Al ranges over the domain 7R.LA71TOMf + { (0, (), ( )}.
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EXAMPLES. In these, and later examples, we show the result of executing a sequence
of commands, starting with the database (DS. 8). We assume that each command cor-
responds to a single-command transaction that commits. For simplicity, we always refer
to the current database state as DS, although it changes with each command's execution
(i.e., transaction's commitment). We also restrict the commands to the relations denoted
by the identifiers R1. R2. and R3 and show only the portion of the database state changed
by each command's execution. We assume that DS maps the identifiers R2 and R3 onto
the following relations.

class signature state
1R2- ((ROLLBACK, 1, 5), (((ename -- string, ((0, 1),

son - integer), 1)

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 3)

(UNDEFINED. 6, -))

class signature state
R,3-- ((UNDEFINED, 0, -)) I () I(

Note that a relation whose current class is UNDEFINED has neither a current signature nor a
current state. The relation denoted by R2 has a MSoT signature (state), but not a current
signature (state). The relation denoted by R3 has neither a MSoT signature (state) nor a
current signature (state).

-1C[defins.relation(R2, rollback, (ename:string, ssn: integer)) I(DS. 9)

clasn signature state
R2-- ((ROLLBACK, 1, 5), (((ename - string, ((0, 1),

son - integer), 1)

({("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)}, 3),

(ROLLBACK, 9, -) ) (0, 9) )
I-___________________ ______________________________________________,_
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C[define.relation(R3, snapshot, (snamo:string, class:string))] (DS, 10)

class signature state
R3-" ((SNAPSHOT, 10,'-) (((snama -- string, (() , 10)

) class string), 10)))I

The first command makes the relation denoted by R2 a rollback relation over the attributes
ename and ssn, effective when transaction 9 commits. Although the new class and the
relation's MSoT class are equal, the intervals associated with the two are disjoint. Hence,
the new class is appended to the relation's MSoT class sequence. The new signature is
not appended to the relation's MSoT signature sequence because it is the same as the
relation's MSoT signature. The new state, the empty set, differs from the relation's MSoT
state. Hence, it is added to the relation's MSoT state sequence. The second command
makes the relation denoted by R3 a snapshot relation over the attributes sname and class,
effective when transaction 10 commits. Because the relation's MSoT at transaction 10 is

( ( ), ( ), ( ) ), the command transforms the relation~s class. signature, and state sequences
into single-element sequences containing the new class. signature. and state. Note that
information about both relations when they were undefined has been discarded as it is not
needed for rollback. 0

Modifying a Relation

The modi•y.r.elation command assigns to a relation, whose current class is other than
UNDEFINED, a new class, signature, and relation state. The assignment becomes effective
when the transaction in which the command occurs is committed. The mod.fty.-rlation
command differs from the def ins.relation command in only three respects. First,
the modify.relation command only updates a relation if its current class is not UN-

DEFINED, whereas the define.relation command does just the opposite. Second, the
modity.-relation command, unlike the defins.relation command. allows the new class
(signature) to be the relation's current class (signature). Third, the aodify.relation
command allows the new relation state to be the value of any semantically correct expres-
sion consistent with the new class and signature, whereas the def ine-relation command
requires that the new state be the empty state consistent with the new class. Other-
wise, the semantics of the two commands is the same. The actions performed by the
def in.-relation command are summarized in Table 4.2.

The formal definition of modify.relation follows directly from the above description
of the command and Table 4.2.
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Current Class New Class

SingleStateCiass MultlStateClass

Extend MSoTNow Class :Append to M~oT,
Extends Not Applicable if Changed

MSoT Class Append to MSoT,
SinglestateClass fChie

or
MultiStat.Ciass 2 1

Append to MSoT Append to MSoT
New Class Append to MSoT, Append to MSoT,

Does Not Extend if Changed if ChangedMSoT Class Append to M&oT, Append to M~oT,
if Changed if Changed

Undefined 1 ro ro

Table 4.2: Modify Relation Command

C[modify.-ralation(I, Y', Z', E)J (d, tn) =

if (M = MSoT(d(I), tn) A T[EJ(d, tn) 0 ERROR A LastClass(d(I)) $ UNDEFINED

A Consistent(Y'[ Y' (d(I)), ZVZ'P (d(I)), TIE] (d, tn)))

then if FindClass(Aif. tn - 1) = Y'l[Y'D(d(I))

then (d[('Expand(M) 113 ((), NewSignature(Af, (Z'[Z'J (d(I)), in)),

NewState(Af, (E[E]D(d, in), in), TIE] (d, in)))

)/I], OK)

else (d[(M 113 (((Y'[Y'j(d(I)), tn, -)), NewSignature(M, (Z'[Z'!(d(I)), tn)),

NewState(M. (E[E]J(d, in), In), TIE] (d, in)))

)/I], OK)

else (d, ERROR)

If a relation's current class is other than UND16iINED, the snodify.-relation command re-
places the relation with its MSoT, augmented to include the new class, signature, and state.
If the relation's current class is UNDEFINED. the command encounters an error and leaves
the relation unchanged.
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EXAMPLES.

C~modify.relation(R2, *, *, p(R2,5) - oronam=eu"Ralph" (p(R2,5)))J(DS. 11)

class signature state
R2-- ((ROLLBACK, 1, 5), (((enam. - string, ((0, 1),

ssn - integer), 1)

({("Phil", 250861414),
("Linda", 147894290),
("Ralph". 459326889)}, 3),

(ROLLBACK, 9, -) (0, 9),

({("Phil", 250861414),
("Linda". 147894290)}, 11))

Clmodify.relation(R3, ,, ,, p(R1,5))](DS. 12)

class signature state
R,3-. ((SNAPSHOT, 12,--) (((snain.e- string, (({("Phil", "junior"),

claus - string), 12) ("Linda", "senior"),
) ) ("Ralph", "senior")}, 12))

The first command changes the state of the relation denoted by R2 while the second com-
mand changes the state of the relation denoted by R3. The commands. however, do not
change the class or signature of either relation. For the first command. the new class (i.e..
R2's current class) is a non-disjoint extension of R2's MSoT class. Hence, the interval for
R2's MSoT class is made into a dynamically expanding interval that includes transaction 11,
but no new element is added to R2's MSoT class sequence. The new signature (i.e., R2's
current signature) is the same as R2's MSoT signature, hence it is not added to R2's MSoT
signature 5equence. The new state differs from R2's MSoT state, hence it is appended to
R2's MSoT state sequence. Because R3's MSoT at transaction 12 is still ( ( ), ( ), ( ) ), the
second command transforms R3's class, signature, and state sequences into single-element
sequences containing the new clats (i.e., R3's current class), signature (i.e.. R's current
signature), and state. Note that R2's s ate at transaction 9 through transaction 10 has
been retained and remains accessible via the rollback operator p, but P.Ys state before
transaction 12 has been discarded (i.e., physically deleted from the database state).



85

C[modify.relation(R3, *, (sna*e:string, course:string),
ir(sname) (R3) x [snapshot, (course:string),

(course: "English")] )JJ (DS. 13)

class signature state

B3-. ((SNAPSHOT. 13, -) (((ain.s -- string, i (({("Phil", "English"),

course - string), 13) ("Linda", "English"),

) ) ("Ralph", "English")), 13))

This command changes R3's signature and state but leaves the relation's class unchanged.

It illustrates two possible changes to a relation's signature, deletion of one attribute and

addition of another attribute. Deletion of an attribute is usually expressed as a projection

over the remaining attributes. Addition of an attribute requires that a value for the new

attribute be determined for each tuple in the relation. Often, as in this example, a single

default value is specified, which is then appended to each tuple. Note again that R3's state
before transaction 13 has been discarded. 0

The modify yrelation command has several noteworthy properties. First, the com-

mand supports all update operations on a relation's state. Append is accommodated by

an expression E, generally containing a union operator, that evaluates to a snapshot or his-

torical state containing all the tuples in a relation's current state plus one or more tuples

not in the relation's current state. Delete is accommodated by an expression E, generally

containing a difference operator, that evaluates to a snapshot or historical state containing

only a proper subset of the tuples in a relation's current state. Replace is accommodated

by an expression E that evaluates to a snapshot or historical state that differs from a

relation's current state only in the attribute values of one or more tuples.

Second, the modify-.relation command ensures that a relation's class, signature.
and state are consistent following update. The command changes a relation's state only if

the new state is consistent with the relation's class and signature. Whenever the command

changes a relation's signature, it also changes the relation's state to ensure consistency

among the relation's class, signature, and state [Navathe & Fry 1976]. Likewise. whenever

the command changes a relation's class, it also updates the relation's state, if necessary, to

ensure consistency among the relation's class, signature, and state.

Finally, the modify.-rel.ation command always treats a relation's signature (state)

sequence as an append-only sequence when the relation's current class is either rollback or

temporal, but it does not automatically discard a relation's current signature (state) on

update even if the relation's current class is snapshot or historical. If a relation's current

class is a single-state class, the command discards the relation's current signature (state)
on update only if the signature (state) is not part of the relation's history as a rollback or

temporal relation.
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Deleting a Relation

The command destroy assigns to a relation, whose current class is other than UNDEFINED,

the new class UNDEFINED. It also deletes, either logically or physically, the relation's z:urrent
signature and state.

C(deatroy(I)j(d, in) =

if M = M~oT(d(I), tn) A LastClass(d(f)) $ UNDEFINED

then (d[(AI 113 (((UNDEFINED, in,-)), ( ), ( )))/I], OK)

else (d, ERROR)

If the identifier I denotes a relation whose current class is other than UNDEFINED, the com-
mand simply appends the new class UNDEFINED to the relation's MSoT for the transaction

in which the command occurs.

EXAMPLES.

C[desou'oy(R2)] (DS, 14)

c18ss signature state
R2-" ((ROLLBACK, 1, 5), (((ename - string, ((0, 1),

son -- integer), 1)

S({("Phil", 250861414),

("Linda", 147894290),
("Ralph", 459326889)}, 3),

(ROLLBACK. 9, 13), (0, 9),

(({(Phil", 250861414),

("Linda", 1,17894290)}, 11)

(UNDEFINED, 14,-)) )

C[doetroy(R3) ](DS, 15)

ciass siqnature state

R3-I ((UNDEFINED, 15,0-)) () (,

Because R2 denotes a relation whose current class is ROLLBACK, the first command uses

the function MSoT to "close" the interval associated with the relation's current class. It
then appends the element (UNDEFINED, 14, -) to R2's class sequence. These actions together
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have the effect of logically deleting P2's current signature and state when transaction 14
commits. Note, however, that this signature and state information is still accessible via

the rollback operator p. The second command uses the function iVSoT to physically delete
R3's current class, signature, and state. No record of R3 as a snapshot relation is retained. 3

It is important to observe from these, and previous, examples that signature and

state information associated with a relation when its class was either snapshot or historical
was transient. It was physically removed when it became outdated. Hence, the language
is consistent with conventional relational DBMS's that discard out-of.date signature and
state information (relation R3 illustrates this). However, signature and state information
associated with a relation when its class was rollback or temporal is retained. ensuring later
access to past states via the rollback operator. Definition of the rollback operator assumes
access to a complete record of a relation's signature and state during intervals when the
relation's class was either rollback or temporal.

Renaming a Relation

The command rename.-relation binds a reiation's current class, signature, and state to a
new identifier.

Clrename.relat ion(11 , 12)) (d, tn) =

if (LastClass(d(t1 )) 6 UNDEFINED A LastClass(e(12)) = UNDEFINED

A Y[ YJ = LastClass(d(Ir)) A Z[Z] = LastSignature(d(11 ))

A C[dofine.relatIon(/ 2 , Y, Z)](d, tn) = (d', oK)

A C[modify.relat ion(1 2 . *, *, 11)1(d', tn) = (d", OK)

A C[destroy( 11)J(d", tn) = (d"', OK))

then (d', oK)

else (d, ER.ROR)

The rena.m.relation first assigns to the relation denoted by 12 the current class and
signature of the relation denoted by I1. It then assigns to 12 the current state of I1.
Finally, it assigns the class UNDEFINED to 11 and deletes, either logically or physically, Ii's
current signature and state. Note that the execution environments for rename.relation's
three subordinate commands, while containing different database states, contain the same
transaction number. Hence, the changes to both I, and 12 become effective when a single
transaction commits.

EXAMPLE. Recall that R1 is the relation shown on page 62.

Cirenaue..relat ion(R1, R3)](DS. 16)
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class signature state
Ri". ((ROLLBACK. 2, 6), ((($name - string, ((0, 2),

son - integer), 2),

({("Phil", 250861414),
("Linda", 147894290),

("Ralph", 459326889)}, 4),

((snaf e - string, ({("Phil", "junior"),
class -- string), 5) ("Linda", "senior"),

("Ralph", "senior")}, 5)

(UNDEFINED, 16,-)) ) )

class signature state
R3-" ((SNAPSHOT. 16, -) (((s$n - integer. (({(250861414, "junior"),

class - string), 16) (147894290. "senior"),
) ) (459326889. "senior")), 16))

This command binds the current class, signature, and state of the relation denoted by R1
to the identifier R3. Hence, R3 becomes a snapshot relation when transaction 16 commits.
The command also transforms Ri into an undefined relation, effective when transaction 16
commits. Because RI's current class, signature, and state are not part of the relation's
history as either a rollback or temporal relation, they are physically deleted.

A Sequence of Commands

If two or more commands appear in sequence, the commands are executed sequentially. If
a command executes without error, the next command is executed using the database state
resulting from the previous command's execution. If all the commands execute without
error, the commands are mapped onto the final database state and the status code OK.

If, however, any command's execution causes an error, the remaining commands are not
executed and the status code ERROR is returned.

C[C1 , C 21(d, tn) = if C[CII(d, in) = (d', oK) then C[C2 ](d', tin) else (d, ERROR)

Two or more commands appearing in sequence are all commands in the same transaction.
Their e~xecution environments have different database states but the same transaction num-
ber. Hence, if the commands change the same relation only the last changes to the relation's
class, signature, and state are recorded in the final database state. Recall that while a re-
lation's new class, signature, and state may depend on its current class, signature, and

state, all commands define the resulting relation in terms of the relation's modified start
of transaction. Also, if the commands change several relations, all the changes become
effective when the transaction commits.
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EXAMPLES. In the previous examples, we assumed that the commands were all taken from
single-command transactions. We now show the result of executing multiple commands
from the same transaction. Recall from page 86 that R2 is currently undefined.

C[define.relation(R2, rollback, (ename:string, ssn:integer)),

modify.relation(R2, ,, ,, p(R2,5)),

modify.-relation(R2, ,, ,, R2 - o ename-"Linda' (R2))]I(DS, 17)

class signature state
R2-- ((ROLLBACK, 1, 5), (((ename - string, ((0, 1),

son - integer), 1)

({("Phil", 250861414),

("Linda". 147894290),
("Ralph", 459326889)}, 3),

(ROLLBACK, 9, 13), (0, 9),

({("Phil", 250861414),
("Linda", 147894290)}, 11),

(ROLLBACK, 17,-) ((("Phil", 250861414),

) ) ("Ralph", 459326889)), 17))

C[destroy(R2), destroy(R3)] (DS, 18)

class signature state
R2-' ((ROLLBACK, 1, 5), (((ename , string, ((0, 1),

sun - integer), 1)

((("Phil", 250861414),
("Linda", 147894290),
("Ralph", 459326889)1, 3),

(ROLLBACK, 9, 13), (0, 9),

((("Phil", 250861414),
("Linda", 147894290)), 11),

(ROLLBACK, 17, 17) ({("Phil", 250861414),

("Ralph", 459326889)), 17)

(UNDEFINED, 18. -)) )

class signature state
3- ((UNDEFINED, 18, ( (
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In the first example, all three commands change R2. Yet, only the last changes to the
relation's class, signature, and state are recorded in the database state. Although the
first command defined R2 as a rollback relation and the other commands changed R2's
state, only the final change in state is recorded. Hence, all the commands in a single
transaction that change the same relation are treated as an atomic update operation. Note
that temporary relations can be defined, modified, and then deleted within a transaction
without their creation being recorded. In the second example, both R2 and R3 are deleted
when transaction 18 commits. 0

4.2.6 Programs

The semantic function P defines the denotation of programs in our language, where a
program is a sequence of one or more transactions. Transactions, in turn, may be either
single-command or multiple-command transactions. P defines a program as a function
that maps a database onto a database and a status code. A program is the only language
construct that changes a database. Execution of a transaction that commits produces a
new database and the status code OK, while execution of a transaction that aborts produces
the original database unchanged and the status code ERROR.

P : PROGRAM -, [DATABASE - [DATABASE x (OK, ERROR)] ]

Note that the environments for command and program execution, although similar, are
different. The environment for command execution is a database state and the transaction
number of the active transaction. In contrast, the environment for program execution is
a database, which is an ordered pair consisting of a database state and the transaction
number of the most recently committed transaction on that database state.

We now define formally the semantic function P for each kind of program allowed in
our language.

P[begin-transaction C commit.•-transaction] (d, tn) =

if CICE (d, tn + 1) = (d', OK) then ((d', tn + 1), OK) else ((d, in), ERROR)

Committed transactions represent transactions that commit if their commands all
execute without error. If all the commands in a transaction execute without error, the
transaction is committed. The database's database-state component is updated to record
the changes that the commands make to relations, the database's transaction-number com-
ponent is incremented to record the transaction number of this most recently committed
transaction, and the status code oK is produced. If any command's execution produces
an error, the transaction is aborted. The database is left unchanged and the status code
ERROR is produced. The database is valid independent of the status code.

P(begin.-transaction C abort.-transaction] (d, tn) = ((d, in), OK)
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Aborted transactions are transactions. which the user initiates, that for some reason.
dictated either by the user or by the system, abort rather than commit. They do not
change the database.

P[PI; P 21(d, tn)

if P[PI] (d, in) - ((d', in'), OK) then P[P21 (d', in') else PJP 21 (d, tn)

If a program contains multiple transactions, they are processed in sequence. If the
first transaction commits and produces a new database, the second transaction is processed
using the new database. Otherwise, the second transaction is processed using the original
database.

Finally, we require that each arbitrary sequence of transactions representing a pro-
gram map onto the database resulting from the execution of the transactions, in order,
starting with the empty database. The empty database, (EMPTY, 0), is defined us-
ing the semantic function EMPTY : TIVA7TI.F7Y1 - ( ((UNDEFINED, 0, -)), ( ), ( ) ).

Hence, the database-state component of the empty database is defined to be the function
that maps all identifiers onto undefined relations; the transaction-number component of
the empty database is defined to be 0. This requirement is both necessary and sufficient
to ensure that the transaction-number components of elements in the class, signature, and
state sequences of each relation in the database are strictly increasing. A database will
always be the cumulative result of all the transactions that have been performed on it since
it was created.

We now define the semantic function P' that maps a program onto the database re-
sulting from the execution of the program's transactions, starting with the empty database.

P': l7OCIRAM - DATA 7 AS,

P'[P] = First(P[PJ(EMPTY, 0))

where First is the function that maps an ordered pair onto the first component of the
ordered pair.

4.2.7 Language Properties

We now state, as theorems, four properties of our algebraic language for database query

and update, with informal proofs. The first property was stated initially as an objective of
our extensions in Section 4.1.

Theorem 4.1 The language is a natural extension of the relational algebra for database
query and update.
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By natural extension, we mean that our semantics subsumes the expressive power of the
relational algebra for database query and update. Expressions in our language are a strict
superset of those in the relational algebra. Also, if we restrict the class of all relations to
UNDEFINED and SNAPSHOT. then a natural extension implies that (a) the signature and state
sequences of a defined relation will have exactly one element each: the relation's current
signature and state; (b) a new state always will be a fanction of the current signature
and state of defined relations via the relational algebra semantics; and (c) deletion will
correspond to physical deletion.

PROOF. First, we show that expressions in our language are a strict supe.set of those in.
the relational algebra. Suppose we only allow expressions involving constants that denote
snapshot states, identifiers that denote relations whose current class is SNAPSHOT, and the
five relational operators. Then, expressions in the language are exactly those allowed in
"the relational algebra. But expressions in our language also may involve constants that
denote historical states, identifiers that denote relations whose current class is other than
SNAPSHOT. and both historical and rollback operators. Hence. expressions in our language
are a strict superset of those in the relational algebra.

Next, we show that our semantics reduces to the conventional semantics of database
state and database update via the relational algebra. Suppose we restrict the class of all
relations to UNDEFINED and SNAPSHOT. Then,

(a) The signature and state sequences of a defined relation will have exactly one element
each, the relation's current signature and state. The relation can have no history
as a rollback or temporal relation; hence its MSoT always will be ( (), (), ( )).
Because the def ine.relation and modify.relation commands change a relation's
signature sequence by appending no more than one element to the relation's MSoT
signature sequence, these commands always will produce a relation with a single.
element signature sequence. The same holds for the relation's state sequence.

(b) A new state always will be a function of the current signature and state of de-
fined relations via the relational algebra semantics. Both the defines.relation and
modify.-rlation commands determine a new state via expression evaluation. The
only semantically correct expressions are those involving constants that denote snap.
shot states, identifiers that denote relations whose current class is SNAPSHOT, and the
five relational operators. These expressions are exactly those allowed in the relation
algebra, their value depending on the current state and signature of defined relations
only.

(c) Deletion will correspond to physical deletion. The deutroy command changes a
relation by appending an element to the relation's MSoT class sequence; it never adds
information to the relation's signature or state sequences. The destroy command
always will produce a relation whose signature and state sequences are empty, which
corresponds to physical deletion of a relation's current signature aaid state. I

Theorem 4.2 The language is a natural extension of our historical algebra for database
query and update.
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PROOF. An argument, analogous to that given above for the snapshot algebra, holds. I
The third property argues that the semantics is minimal, in a specific sense. Other

definitions of minimality, such as minimal redundancy or minimal space requirements, are
mor, appropriate for the physical level, where actual data structures are implemented, than
for the algebraic level.

Theorem 4.3 The semantics of the language minimizes the number of elements in a re-
lation'. class, signature, and state sequence needed to record the relation's current class,
signature, and state and its history as a rollback or temporal relation.

PROOF. Assume that the number of elements in a relat.on's class sequence exceeds the
minimum naeded to record the relation's current class and its history as a rollback or
temporal relation. Then, (a) there are two consecutive elements in the sequence that can
be combined or (b) there is an element in the sequence that can be removed. Consider
case (a). Consecutive elements in the class sequence can be combined only if they record
the same class over non-disjoint intervals. But the commands only append a new element
to a relation's class sequence if it either differs from the relation's MSoT class or its interval
is disjoint from that of the relation's MSoT class. Hence, no two consecutive elements in a
relation's class sequence can have the same class but non-disjoint intervals. Now, consider
case (b). Commands always produce a new relation by appending new class information
to a relation's MSoT class sequence. But, it can be shown that all elements in a relation's
MSoT class sequence record intervals when the relation was either a rollback or temporal
relation. Hence, no element can be removed. If no two elements can be combined and no
element can be removed, our assumption is contradicted and the number of elements in the
class sequence must be minimal. Similar a'guments hold for the relation's signature and
state sequences. I

The fourth property ensures that the language accommodates implementations that
use WORM optical disk to store non-current class, signature, and state information, an-
other objective of our extensions.

Theorem 4.4 Transactions change only a relation's class, signature, and state current at
the start of the transaction.

PROOF. This property is a consequence of the way the AMoT function is defined and used.
We first prove the property for a relation's signature sequence and then for its class and
state sequences.

A relation's current signature at the start of a transaction is the last element in the rela-
tion's signature sequence. Assume. therefore, that a transaction changes an element that
is in the relation's signature sequence at the start of the transaction but is not the last
element in the sequence. Such a change must occur during the execution of a command.
When the first command in a transaction executes, A'SoT discards the last element in



94

the relation's signature sequence, if the relation's current class is either SNAPSHOT or HIS-

TORICAL. Otherwise, it retains all the elements. When each subsequent command in the

transaction is executed, M~oT only discards any element that the preceding command

added to the sequence. Hence, AM'oT never changes an element in a relation's signature

sequence that precedes the last element in the sequence at the start of the transaction.

Commands, although they may append an element to the relation's MSoT signature se-
quence, never change existing elements. Hence, commands never change an element in a
relation's signature sequence that precedes the last element in the sequence at the start
of the transaction and our assumption is contradicted. The same argument holds for the
relation's state sequence.

The above argument holds for a relation's class sequence with the following provisos. When
the first command in a transaction executes, M,.SoT discards the last element in the re-
lation's class sequence if the relation's current class is UNDEFINED. Also, if the relation's
current class is either ROLLBACK or TEMPORAL, I&oT changes the last element in the se-
quence to "close" the interval assigned to the relation's current class at the start of the
transaction. When each subsequent command in the transaction is executed, MSoT "re-
closes" this same interval, if extended by the preceding command. Hence, MSoT never
changes an element in a relation's class sequence that precedes the last element in the
sequence at the start of the transaction. Commands may change the last element in a
relation's MSoT class sequence to "extend" the interval assigned to the class component
of that element, but only if the new class and the relation's MSoT class are equal and
their intervals abut. This occurs only when the last element in the relation's MSoT class
sequence corresponds to the last element in the relation's class sequence at the start of the
transaction (i.e., the class of the relation at the start of the transaction was either ROLLBACK

or TEMPORAL). Otherwise, the intervals could not abut as there would exist an intervening
interval when the relation's class was either SNAPSHOT, HISTORICAL, or UNDEFINED. Hence.
commands never change an element in a relation's class sequence that precedes the last
element in the sequence at the start of the transacti )n. I

4.3 Additional Aspects of the Rollback Operators

The rollback operators in our langun.ge are more powerful than suggested in the previous
section, in several ways. First, the rollback operators, as defined, are restricted to the
retrieval of a single snapshot or historical state from a named relation current at the
time of a specified transaction, In reality, however, the rollback operators derive a single
snapshot or historical state from one or more of the named relation's stored states rather
than simply retrieving a single state. The rollback operators actually roll back a relation
to the subsequence of the relation's state sequence corresponding to an interval of time of
arbitrary length, if the relation's class and signature remained constant over that interval
of time. The rollback operators return the single state composed of tuples from all the
states in the specified subsequence of relation states (effectively, a relational union, either
snapshot or historical, is performed). The rollback operators thus take two transaction
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times as arguments:

E ::= p(I, N, N) 1A(I, N, N)

Second, the rollback operators do not simply retrieve a snapshot or historical state
from a named relation but rather an augmented version of that state. To the state's ex-
plicit attributes, defined in its signature, the rollback operators add new explicit attributes
corresponding to the state's implicit time attributes (i.e., transaction times for snapshot
states, transaction and valid times for historical states). The rollback operators' addition
of these new attributes to the state's existing explicit attributes allows the user to dis-
play the values of the state's implicit time attributes without allowing direct access to the
attributes themselves. These explicit values are considered to be in the domain of user-
defined time. This behavior requires that the semantic function T compute a relationai
signature containing these additional attributes.

Third, the rollback operator p can be applied to temporal relations as well as rzllback
relations. If p rolls back a relation to a time when the relation's class was TEMPORAL. p will
convert the relation's historical state current at that time into a corresponding snapshot
state and return this new snapshot state. Likewise, the rollback operator A can be applied
to rollback relations as well as temporal relations. If A rolls back a relation to a time when
the relation's class was ROLLBACK, A will convert the relation's snapshot state current at
that time into a corresponding historical state and return this new historical state.

While these extensions are conceptually straightforward, the notation required co
define them formally is cumbersome and will not be presented.

4.4 Summary and Related Work

In summary, we have defined in this chapter an algebraic language for database query and
update. It subsumes both the relational algebra and our historical algebra, and it supports
both snapshot and historical rollback. The language also has a simple semantics and
supports scheme evolution. Only two additional operators, p and A, were necessary, The
additions required for transaction time did not compromise any of the useful properties of
the conventional snapshot algebra or our historical algebra. Type-checking was introduced.
freeing the encapsulated algebras from dealing with expressions not consistent with the
(possibly time-varying) scheme. Also, the approach introduced here is not restricted to the
relation algebra and our historical algebra. It can accommodate most historical algebras:
we only require that expressions in the algebra evaluate to historical states.

This chapter makes three contributions. The primary contribution is an algebraic
means of supporting both scheme and contents evolution in the context of general support
for transaction time. As an algebraic language for database query and update, our language
can serve as the underlying evaluation mechanism for queries and updates in a temporal
data manipulation language that supports evolution of a database's contents and scheme.
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It can also be used as the basis for proving various physical implementations of temporal
database management systems correct. Our language also is compatible with efforts to add
transaction time to the relational data model at both the user-interface and the physical
levels. At least three temporal query languages have been proposed that support rollback
operations [Ariav 1996. Ben-Zvi 1982. Snodgrass 1987] and several studies have investigated
efficient storage and access strategies for temporal databases (Ahn 1986A, Ahn 1986B,
Ahn & Snodgrass 1986, Ahn & Snodgrass 1988, Lum et al. 1984, Rotem & Segev 1987,
Shoshani & Kawagoe 1986, Thirumplai & Krishna 1988]. Also, the considerable research
into efficient storage and access strategies for persistent data structures (Chazelle 1985,
Cole 1986, Dobkin & Munro 1985, Myers 1984, Sarnak & Tarjan 1986] can be used to
implement our semantics. Verma and Lu discuss the use of persistent data structures to
implement databases containing either rollback or temporal relations (Verma & Lu 1987].

The second contribution is the model of database state as a sequence ordered by
transaction time. Each element in the sequence is a cross-section of the the database state
at a transaction, containing, for each relation defined at that time. either a snapshot or
historical state. In a related effort. Abiteboul and Vianu have defined a transaction lan-
guage TL consisting of parameterized expressions containing tuple insertions and deletions
and a looping construct [Abiteboul & Vianu 1987"]. In TL. the database state is modeled
"-"procedurally" by providing the transaction(s) that compute that state; transaction time
is implicit. The focus of this and previous research [Abiteboul & Vianu 1985, Abiteboul
& Vianu 1986, Vianu 1983] is developing a characterization of the possible database states
computable by constrained transactions, with the goal of using such transactions as a spec-
ification tool for stating dynam'ic constta•unlt. TNe goa oa ot 'Nt
model the evolution of the database in terms of transactions specified by tle user in a
calculus-based update laguage that is translated by .he DBMS into algebraic expressions.

The third contribution is the formalization of the evolving state through the definition
of the modify..relation command. This aspect has been investigated at the user-interface
level by several researchers in the context of dynamic constraints on updates of database
instances (Brodie 1981. Ceri er al. 1981, Hammer& MkIcLeod 1981]. At the algebraic level,
only Ben-Zvi has attempted such a formalization. His approach is to provide procedures for
various manipulation commands (e.g., insert, delete, terminate) and prove that these pro-
cedures maintain various desirable properties. The effect of these procedures are localized
to a specific tuple that changes during the transaction. Our modify..re.laion command
simply replaces or appends a new entire snapshot or historical state, allowing many tuples
to change during a transaction. Of course, actual implementations would be based on
more complex representations that exhibit greater space and time efficiency. Verifying the
correctness of such implementations would involve demonstrating the equivalence of their
semantics wi.h the simple semantics presented here.

There have been two other attempts to incorporate both valid time and transaction
time in an algebra. In BenZvi's proposal. valid time and transaction time were supported
through the addition of implicit time attributes to each tuple in a relation [Ben-Zvi 1982).
The algebra was extended with the Time-tView algebraic operator which takes a relation
and two times as arguments and produces the subset of tuples in the relation valid at
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the first time (the valid time) as of the second time (the trrunsaction time). The Time-

View operator thus rolls back a relation to a transaction time but returns only a subset
of the tuples in the relation at that transaction time (i.e., those tuples valid at some
specified time). This restricted definition of the Time-View operator is tied inextricably
to his particular handling of valid time. Our approach is compatible with any historical
algebra. Gadia represents valid time and transaction time as two symmetrical dimmensions
in a boolean algebra of multidimensional time stamps [Gadia & Yeung 1988]. He allows
rollback operations on transaction time through a generalized restriction operator, which
may be applied to any of a relation's time dimensions. He does not, however, address the
problems of database update or scheme evolution.

While a few authors have envisaged the benefits of a time-varying scheme (Ariav 1986,
Ben-Zvi 1982, Shiftan 1986. Woelk et al. 19861, only one other extension of the relational
algebra. that proposed by Ben-Zvi, includes support for an evolving scheme. Ben-Zvi
proposes that a temporal relation's scheme itself be represented as a temporal relation,
thus providing a uniform treatment for evolution of a relation and its scheme [Ben-Zvi
1982). He does not. however, provide formal semantics for scheme evolution in the context
of general support for transaction time. Martin proposes a non-algebraic solution to the
problem of an evolving scheme in temporal databases using modal temporal logic [Martin
et al. 1987]. A scheme temporal logic is proposed to deal with changes in scheme. A set
of scheme temporal logic formulae are associated with a scheme to describe its evolution
and temporal queries are interpreted in the context of these formulae. This approach,
unlike ours, forces synchronization between valid time and scheme changes. Again, formal
semantics are not provided. Finally, Adiba, in describing mechanisms for the storage
and manipulation of historical multi-media data, advocates, like Ben-Zvi, that the history
notion used to model changes in a database's contents also be used to model changes in
the database's scheme [Adiba & Bui Quang 19861.

While there has been significant interest in database reorganization and restructuring

[Banerjee et al. 1987. MaNrkowitz & Makowsky 1987. Navathe & Fry 1976. Navathe 1980.
Roussopoulos & Mark 1985. Shu et al. 1977. Sihu 1987, Sockut & Goldberg 1979J, such
approaches have assumed that the scheme (and hence the contents) of the entire database
will be modified during restructuring, ensurin& that only one scheme is in force. Since we

formalize the scheme as a sequence ordered by transaction time, several schemes can be
in force, selectablo through the rollback operator. A second difference is that we focus
solely on algebraic support for scheme evolution, while the other papers considered the
related issues of determining what changes to the bcheme are necessary and what those
changes imply regarding the new state to be calculated. Certainly, all these issues must be
addressed before a comprehensive solution to scheme evolution is developed.

In contrast to these previous approaches, the WAND system did perndt several gen-
erations of schemes to be simultaneously present [Gerritsen & Morgan 1976]. This system
differs from our approach in two respects. First, the WAND system was based on the

network model, whereas our approach is based on the relational model. More significantly,
scheme evolution was supported in the WAND system to allow dynamic restructuring of
the database. While data in the WAND system could also be associated with one of sev-
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eral generations of schemes, the data were always restructured to match the most recent
scheme as they were referenced. Multiple generations were Introduced to achieve concur-
rency between restructuring and execution of application programs. Hence, the underlying
model did not support transaction time or rollback. The WAND system was effectively
a snapshot DBMS that permitted applications to access and change the database while a
global restructuring was being performed.

ORION, a prototype object-oriented database system being developed at MCC, takes
a similar approach (Banerjee et al. 1987]. An important difference is that when the scheme
in ORION is modified, no disk-resident data instances need be updated. Instead, when an
instance is referenced by an application program and fetched into memory, it is transformed
into an instance conforming to the scheme currently in effect. Again, only one scheme is
ever in effect; the implementation places the burden of updating the data across a scheme
change on subsequent retrievals.

Several researchers have used denotational semantics to define formally the semantics
of databases, DBMS's. and query languages. Subieta proposes an approach for defining
query languages formally using denotational semantics (Subieta 1987]. This approach allows
powerful query languages with precise semantics to be defined for most database models.
Rishe proposes that denotational semantics be used to provide a uniform treatment of data-
base semantics at different information levels based on hierarchies of domains of mappings
from "less semantic" representations of information into "more semantic" representations
[Rishe 1985]. Neither Subieta nor Rishe, however, include in their approaches any facili-
ties for dealing with transaction time or an evolving scheme. Lee proposes a denotational
semantics for administrative databases, where databases are regarded as a collection of log-
ical assertions (Lee 1985]. Here, the denotation of an expression in a Frst-order predicate
calculus is based, in part, on its evaluation in a time dimension, analogous to valid time.
in a possible world, analogous to a cross-section of a database state at a transaction.



Chapter 5

Equivalence With TQuel

In Chapter 3 we extended the snapshot algebra to handle valid time by defining a historical
algebra. Then. in Chapter 4 we described an approach for adding transaction time to
both the snapshot algebra and our historical algebra. We now show that the algebraic
language for query and update of temporal databases defined in those chapters has the
expressive power of TQuel (Temporal QUEry Language) [Snodgrasa 1987]. TQuel is a
version of Quel (Held et al. 19751, the calculus-based query language for the Ingres relational
database management system (Stonebraker et al. 1976], augmented to handle both valid
time and transaction time. A brief review of TQuel constructs for handling time appears
in Section 2.1.

Because our formalization of the contents of a database differs from that used in
TQuel's semantics, we first show the correspondence between a TQuel database and a
database as defined in our language. We then show that our language subsumes TQuel by
giving, for each type of TQuel statement (i.e., retrieve, create, append. replace. delete.
and destroy), its equivalent transaction in the language. (We postpone discussion of views
until the next chapter). We first consider the basic TQuel retrieve statement without
aggregates and then more complex TQuel retrieve statements with aggregates in their target
lists, where clauses, and when clauses. Having dispensed with the retrieve statement, we
proceed to give the language equivalences for the TQuel create, append, replace, delete, and
destroy statements. We conclude the chapter with two language correspondence theorems.

For notational convenience, we associate " ' " with TQuel database states, relation
states, tuple variables, and expressions throughout this chapter to differentiate them from
their counterparts in our language. We also consider only databases of temporal relations,
the most general class of relations. All arguments apply equally to databases containing
snapshot, historical, and rollback relations.

5.1 TQuel Database

As in our language, a TQuel database can be viewed as an ordered pair consisting of a
database state and the transaction number of the most recently committed transaction
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on the database. Similarly, a TQuel database state can be viewed as a mapping from
identifiers onto relations. Relations. however, are defined differently in the two languages.
Unlike our language, which represents a relation's contents as a sequence of relation states
indexed by transaction time. the formal semantics of TQuel conceptually embeds a rela,
tion's contents, whether "he relation's class be snapshot. rollback, historical, or temporal.
in a single snapshot state. The embedding is done purely for convenience in developing the
semantics. TQuel, unlike our language, assumes tuple time-stamping. It represents valid
time by adding two implicit attributes to each tuple to specify the time when the 4uple
became valid (i.e., From) and the time when the tuple became invalid (i.e., To). TQuel
represents transaction time by adding two more implicit attributes to each tuple to specify
the time when the tuple was entered int-, the relation (i.e., Start) and the time when the
tuple was removed from tLe relation (i.e., Stop).

EXAMPLE. Assume that we are given the historical state S, from page 25 over the relation
signature Student with the attributes {Snane. course), duplicated below.

{ (("Phil", {1,3,4)), ("English", {1,3,4})),

(("Norman", {1,2}), ("English". {1,2})),

(("Norman", {5,6j), ("Math", {5,6})) }

This historical state, if represented as a TQuel embedded temporal relation created by
transaction 423, would have the following form.

sname course From To Start Stop

"Phil" "English" 1 2 423 00

"Phil" "English" 3 5 423 00

"Norman" "English" 1 3 423 00

"Norman" "Math" 7 423 oo

We show the TQuel relation as a table simply for notational convenience in identifying the
implicit attributes. Note that in TQuel a tuple's interval of validity doesn't include the
chronon assigned to the attribute To. 0

As shown in this example, TQuel, unlike our language, allows value-equivalent tu-
pies (i.e., tuples with identical values for their explicit attributes) in a relation state. It
assumes, however, that value-equivalent tuples, active at the time of a transaction tn. are
coalesced; they neither overlap nor are adjacent in time. We define here the boolean func-
tion Coalesced that determines whether a TQuel embedded temporal relation is coalesced.
For this definition, let R' be a TQuel embedded temporal relation with explicit attributes
A= { 1m)... ,,}
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Coalesced(R') =

VtnVtj Vr', 2r 'A ER

AVI. I E A. rP(I) = r(')

A r',(Start) < tn < r'(Stop) A r'(Sta-rt) < tn < r'(Stop))
(ri(To) < r2 (From) V r'r(To) < r'(From))

We now show that it is possible to map the embedded, coalesced temporal relations

used in TQuel's formal semantics onto historical relation states in our language. The trans.
formation function TFT maps a TQuel embedded temporal relation R' with attributes
AAR, = {11, ... , In, From. To. Start. Stop} and a transaction number tn onto R"s equiv.
alent historical state R at the time of transaction tn. where R is a historical state with
attributes ARl = (1,.. ,, in our language.

TFT(R', tn) - {umr (VI, IEAAR, Vt, t E Valid(u(I)),

3r', Wr E R'

A VI', P'E EAR, Value(u(I')) = r'(I')

A Before(Pred(r'(Start)), tn) A Before(tn, r'(Stop))

A t E Extend(r'(From), Pred(r'(To)))

A (Vr', (r' E R'

"A VI, I E AR, r'(1) = 1"alue(u(l))

"A Before(Pred(r'(Start)), tn) A Before(tn, r'(Stop))),

VI, I E An, Extend(r'(From), Prmd(r'(To))) C Valid(u(l))

where Before is the "<" predicate on integers. The first clause of this definition ensures
that each tuple in TFT(R', tn) has at least one value-equivalent tuple in R' that was active
at transaction tn (i.e., Before(Pred(r'(Start)), tn) A Before(tn, r'(Stop))). The second
clause in the definition ensures that each subset of value-equivalent tuples in R', active at
transaction in, is represented by a single tuple in TFT(R', tn). Note that the same time-
stamp is assigned to each attribute of a tuple in TFT(R', tn). This time-stamp is simply
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the union of the time-stamps of those value-equivalent tuples in A' active at transaction
tn, We could define, without difficulty, analogous transformation functions TFH and TFR
for TQuel embedded historical and rollback relations. A transformation function is not
required for snapshot relations because a TQuel snapshot relation is formalized identically
to our snapshot state.

Because TQuel assumes that value-equivalent tuples are coalesced, the valid times
assigned value-equivalent tuples in R', active at transaction tn, are disjoint, non-adjacent
intervals. Hence, each distinguishable interval in the attribute time-stamps of a tuple in
TFT(R', in) corresponds to the valid time of one of the tuple's value-equivalent counter-
parts in R', as we now show.

Lemma 5.1 Vr, r E TFT(R', tn), VI, I E AR, VIN, IN r Interval( Valid(r(I))),

3r (r' W R'

A VI', I' E AR, Ualue(r(I')) = r'(I')

A Before(Pred(r'(Start)), in) A Before(tn, r'(Stop)),

A IN = Extend(r'(From), Pred(r'(To)))

)

PROOF. Apply the definitions of Coalesced and Interval to TFT and simplify. I

EXAMPLE. If we let R' be the TQuel embedded temporal relation given in the previous
example, then TFT(,R', 423) is the historical state SI, also given in the example. Consider
the following tuple r taken from the historical state and the tuples r' and r' taken from
the TQuel embedded temporal relation.

r = (("Phil", {1,3,4}), ("English", {1,3,4}))

r/= ("Phil", "Engish". 1, 2, 423, oo
I = ("Phil", "English". 3, 5, 423, oo)

then Interval( Valid(r(uname))) = { 1}, { 3, 4}}

Interval( Valid(r(xstae))) = {{1}, {3, 4}}

Extend (rl (From), Pred(rj(To))) = {1)

Eztend(r'(From), Pred(r'(To))) = {3, 4)
01
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TQuel doEs not allow changes to the signature of an embedded temporal relation.

once the relation is created. Hence, we can define a TQuel database (d', in) of embedded

temporal relations to be temporally equivalent to the database (d, in) in our language if.

and o.-dy if,

VI, I E IDEtMt .2YTC, Vtn', 1 < tn' < in.

if Findclass(d(I), in') in ERROR

then (Findclass(d(I), in') = TEMPORAL A Class(d'(I), tn') = TEMPORAL

A FindSignature(d(I), in') = Signature(d'(I), tn')

A Findstate(d(I), tn') = TFT(d'(I), tn'))

else Class(d'(I), in') = ERROR

where the function Class returns the class of a TQuel embedded relation at the time of a

specified transaction and Signature returns the signature that corresponds to the relation's

explicit attributes. These functions can be defined analogously to the functions Findclass

and FindSignature in our language.

We also define a TQuel statement and a transaction in our language to be equiva-

lent if, and only if, they map temporally equivalent databases onto temporally equivalent

databases.

5.2 TQuel Retrieve Statement

Assume that we are given the TQuel database (d', in) containing the k embedded temporal

relations R , .... R' on signatures z', ... , -4 that induce, respectively, the attributes,

•A = {11,1, ... , Ii.m,, From, To. Start, Stop}

Ak = {Ik,1, .. , ,mk, From. To. Start, Stop}
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For notational convenience, assume that ,.,, .. k, m are unique. Furthermore, let Qi,
i2, ... , i,1 be integers, not necessarily distinct, in the range I to k and aj, 1 :5 1 < n, be a
distinct integer in the range 1 to mn,. Then, the TQuel retrieve statement has the following
syntax

range of r' is I1

range of r' is Ik

retrieve into persistent Ik.+£(Ik+l, a r',.Ii1,, ... =k4.,

valid from v' to X' (5.1)

where 0'

when r'

as of a~'

where d'(lj), 1 < j _5 k, denotes the embedded temporal relation Rj. We assume the
type correctness of this statement for the TQuel database (d', tn). The statement, when
executed on (d', tn), creates a new relation denoted by 4.÷I, computes a new embedded
temporal relation R 1+j with attributes

A&+j = (l+,4,, ... , Ik+i.n, From, To, Start, Stop)

and changes the database state d' to map Ik+1 onto this new relation. Execution of
the statement also causes the transaction-number component of the database to be in-
cremented.

5.2.1 Semantics

The tuple calculus for the new relation is
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( {u-+4 I (3i ) . .

R' A R^... A r, E R'.

A u(Ik+1,1) = r%1(Ij,,.,) A- A u((1+1,.)
A u(From) V((r'(From), r'(To)), .... (r4(From), r'(To)))

uA (To) -$•((r'(From), r'(To))., (r4(From), r'.(To)))

A u(Start) - current transaction number A u(Stop) = :0

A Before(u(From), u(To)) (5.2)
A €r(1,).. rI(Ik, mj)

A r'((rj(From), rl(To)), ... , (k(From), r.(To)))

A Vj, I<- j < k, Before( Pred(re(Start)), V ) A Before(V', r•(Stop))

where Coalesced(RI'), .... Coalesced(Rk+I) are true. the ordered pair (r•(From), r' (To)),
15 j _< k, represents the interval [rý(From), r-(To)), and ,, 4' , x, V , and r' are the
denotations described below of W, v', X', T', and a' respectively. V. does not require any
parameters because, unlike V and 01 , it can't contain tuple vaiables.

is obtained by replacing each occurrence of an attribute reference r'..1 ,6 . 1 5 j 5 k,
1< a < mi, in 0' with rý(Ia) and each occurrence of a logical operator with its corre-
sponding logical predicate. That is,

and - A,

or -, v, and

not -

lt, v , and 0 are obtained by replacing each occurrence of a tuple variable
in v' and X' with the ordered pair (r•(From), r'(To)) and each occurrence of a temporal
constructor with a corresponding function. That is,

' -- (rj(From), rj(To))

begin of IN - beginof(IN).

end of IN -, endof(IN),

IN, overlap IN2 - overlap(INI, IN2 ), and

INM extnd IV2 - eztend(IN|, IN2)
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where beginof, endof, overlap, and extend are functions on the domain "A/. Formal defi-
nitions for these functions are presented elsewhere (Snodgrass 1987].

r, is obtained by replacing each occurrence of a logical operator in r' with its corre-
sponding logical predicate according to the rules given for its replacement in 0', replacing
each occurrence of a tuple variable or temporal constructor according to the rules given
for their replacement in v' and X', and replacing each occurrence of a temporaj predicate
operator with an analogous predicate on intervals. That is,

IN1 precede IN2 - precede(INI, IN2),

IN1 overlap IN2 - overlap(IN1 , I- 2 ), and

IN1 equal IN 2 - equal(INI, IN2 )

where precede, overlap, and equal are predicates on the domain LVZ. Formal definitions for
these predicates are presented elsewhere (Snodgrass 19871.

Before we present the algebraic equivalence of the TQuel retrieve statement, we
describe the mapping of each of the TQuel syntactic constructs ;&, V', •, C , and r'
onto its counterpart in our language. 0, is obtained by replacing each occurrence of

.Ii,.2, 1 :_ j •_ k, 1 <5 a < mj, in V' with Ii,,. v, X, and a are obtained by replac-
ing each occurrence of a tuple variable r•, 1 _< j _5 k, in V and x' with Ij. , and each
occurrence of a temporal constructor with its algebraic equivalence. That is,

r, -j , It

begin of IN - First(IN),

end of IN - Last(IN),

IN, overlap IN2 - IN1 n IN2, and

INI extend IN2 - Extend(First(INI), Lasut(I 2)).

r is obtained by replacing each occurrence of a tuple variable or temporal constructor
in r' according to the rules given for their replacement in t/ and X', and replacing each
occurrence of a temporal predicate operator with its algebraic equivalence. That is,

INI precede IN2 - Last(INI) < Firu(IN2 ) or Lat(INO) - First(IN2 ),

IN, overlap IN2 - not (IN , n IN2 = { }), and

IN, equal INV2 - IN, - IN2.

Note from the definition of TFT(R', tn) that a tuple in TFT(R', tn) has the same
time-stamp for each of its attributes. Hence, although we require that each occurrences of
a tuple variable (rý in v', X', a', and r' be replaced with the same attribute name (i.e.,
I4, 1), we could have specified any attribute of historical state Rj.
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The semantic functions that map W, v, X, a. and r onto their denotations in our
language are defined in Appendix B. Let TO, v, bx, , and r, be the denotations of 0,
v, X, a, and r, respectively. Then, the following two lemmas, which will be needed in the
equivalence proof to be pretented shortly, hold.

Lemma 5.2 C, 0x, and r,. are semantically equivalent to V, 1', and r,
respectively. That is, the result of evaluating V, ', 1', and r", for tuples rý, r E
R•, 1 5 j 5_ k, is the same as the result of evaluating lo, 0,, 0., and rr for the intervals
INi, IN, = Eztend(rý (From), Pred(r (To))) substituted for the attribute name 1j, 1.

PROOF. The semantic equivalence follows directly from the definitions of the functions that
are used in V , V•, ,, and r, [Snodgrass 1987j and the functions, defined in Appendix B,
that are used in §,, x, i,, and r,.

Lemma 5.3 t E Eztend(O'(...), Pred((.. .))) -- Before(V,(... ), <....

PROOF. It follows directly from the definition of Extend. given in Appendix B. that
t e Eztend($v(. ), Pred((.. .)))implies 4(...) < t < V which in turn implies
Before( V,(.. .V), $Y(".))" I

5.2.2 Correspondence Theorem

Having defined the algebraic equivalences of expressions in the new TQuel clauses, we
can now define the algebraic equivalence of a TQuel retrieve statement. Assume that we
are given the value domains Du, 1 •_ u < e, and the semantic function DN, defined in
Appendix B, that maps idqntifiers onto value domains (i.e., DN "names" value domains).
Let U1, U2 .... un be integers, not necessarily distinct, in the range i to e where signature
zi, maps attribute I,., and DN maps domain name I,,, onto value domain Du,, 1 I 1 < n.
Then the algebraic equivalence of the TQuel retrieve statement, without aggregates. is

begin.-transaction

def ine-rela~ton(/k+j, temporal , (Ik+•,, : Iul , ... , Ik+t,,. :lu,) ) ),

modif y-relation(/t+1,. , (lk+|,, : (4a', 0 /l,ai )o* -, k+l,n : •,. i,.)

6r, (I,1 :u Extand(v, Pred(X)) .,

lki,,h : u Ext•nd(v, Pred (W))(

commit-.transaction
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Like the TQuel retrieve statement, this transaction first creates a new temporal relation
denoted by Ik+1 and then assigns to it the historical state represented by the specified
algebraic expression. The snapshot state specified in every Quel retrieve statement (a target
list and where clause) is equivalent to an algebraic expression that represents cartesian
product of the snapshot states associated with tuple variables, followed by selection by the
where-clause predicate, and then projection on the attributes in the target Eist. Similarly,
the relation state specified in every TQuel retrieve statement is equivalent to an algebraic
expression that represents cartesian product of the referenced relation states, followed by
selection by the where-clause predicate, historical derivation as specified by the when and
valid clauses, and then projection on the attributes in the target list.

Theorem 5.1 Every TQuel retrieve statement of the form of 5.2 found on page 104 is
equivalent to a transaction in our language of the form

PROOF. For this proof. assume that execution of the above transaction on database
(DS1 , in) produces the database (DS 2, III + 1) and execution of the TQuel retrieve state-
ment given in 5.2 on database (DS', tn) produces the database (DS', tn + 1). Also assume
that (DS1, tn) and (DS', nt) are temporally equivalent databases. Then, to prove that
the transaction is the algebraic equivalence of the TQuel retrieve statement, we must show
that (DS 2, tn+ 1) and (DS', tn+ 1) are temporally equivalent. From the assumptions that
the TQuel retrieve statement is type correct and the databases, before the transaction (or
retrieve statement) is executed, are temporally equivalent, it follows that the transaction
is also type correct. Hence, to show that the databases are temporally equivalent, we need
show only that, immediately following the execution of the transaction on (DS 1, tn) and
execution of the TQuel retrieve statement on (DS', tn),

Find~staie(DS2( I•+1), tn + 1) = TFT(DS'( Ik+,), tn + 1).

It follows from the definitions of the commands define-relataion and mcdify-relation
and the semantic functions P, C, E, and T from Chapter 4 that

Findstate(DS 2(4+0), tn + 1) =

(( , ( ,,, 0(4 ,61,111 , . (t ,. , (t ,.Yi , .", 11.,s . pi( ))( (5(3)

_ 6r.,((I•,, •.•.•<•,p~ed( ))) .... (,,.A,, Erlead(O , .+< ))(

S...Ak, ,)))).
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If we let this historical state be R, we must show that R - TFT(R'k+i, tn + 1), where
R'+ 1 is the TQuel embedded temporal relation denoted by Ik+j in DS'. From set theory
and the definition of TFT, it follows that R and TFT(R'k+l, tn + 1) are equal if. and only
if, the following holds.

(Vr, r E R, VI, I E AR, Vt, t E Valid(r(A(I))),
--- ~ ('+ R'

k k+I

"A VIP, I' E AR, Valae(r(I')) = r'+,(I,)

"A Before(Pred(rk+ (St art)), In + 1)

"A Before(tn + 1, r.+ I(Stop))

"A t E Eztend(rk+l(From), Pred(r'+,(To)))

(5.4)

_ )

A (Vr, r E R, Vr'k+11 (rk.+t C Re

A VI, I E AR, rk+l(I) = Value(r(I))

ABefore(Pred(r 4+I(Start)), tn + 1)

A Before(in + 1, r•+ 1(Stop))),

VI, I E AR,

Eztcnd(rk'+I(From), Pred(r'.+,(To))) gC Valid(r( [))

where AR = {lk+ , *, _, Ik+I,,). Recall that the first clause ensures that each tuple
in R has at least one value-equivalent tuple in R'.+1 that was active at transaction tn + 1
and the second clause ensures that each subset of value-equivalent tuples in Rk+,, active
at transaction tn + 1, is represented by a single tuple in R.

To prove the validity of (5.4), we show that the tuple calculus semantics for R, along
with the tuple calculus semantics for R,+I given in (5.2), implies (5.4). First, we construct
the tuple calculus statement for R from the definitions of the historical operators k, &-, 6,
and t, using straightforward substitution, change of variable, and simplification (i.e., the
definition of A(II, $) x ... k (I , 0,,) obtained from the ý operator is substituted for
references to the historical state in the definition of &. etc.), arriving at (5.5).
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R = {Ilki(g 1 a,+ 1) 1.

I fry' I (VII, I E AR, Vt, t E Valid(r(I)),

3 (ri E (I1, -b.) A -- Ark E Wk, -CO

4 A INt E Inaterval( Valid(r 1 (I,, ))) A.
5 A I1Vk E Interval( Talid(rk(Ikl))
6 A V1, I < I < n. Vaiue(r( Tk+i,L)) = T/alue(ri1(it,1,a1)

7 A TV,,(r 1 x ... x ri-)

8 A r., ((1,, , IN ), ... , (ik-, 1,INk))

9 ~~~A t E Exiend(4ý',((1,, 1, INI ), ..., (1k, 1, INk)),

11(.5

12 A .(1 .. .(Vrk)(VIjj *. (V1P4)

14 A IN1 E Interval( Valid(ri (11, )))A A.

is A INk E Interval( Valid(rk(Ik.1)))
16 A V1, 1 < I < n, V'nilue(rj 1(4,,.,)) = Value(r(Ik-+j,,))

17 A ip,(r, x ... x rk)

19

20VIEAR

21 ~Extend('P,((Ij,,, IN,),..,(Ik,,, INk)),
22 Pred(Ox ((Ii,i, AM .(4, 1, INk)))) 1 Valid(r(1))

24 A (31, 1 E A, A Valid(r(1)) .4 0)
25
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The three main clauses in the above calculus statement correspond to the three clauses
in the definition of *, which appears on page 30. The k operator contributes the phrase
rl E A(II, 0.)A^...Ark E ,5(I&, 0.) that appears in lines 3 and 13 of the calculus statement.
The & operator contributes the predicate found on lines 7 and 17 and the 6 operator
contributes the predicates found on lines 4-5, 8-10. 14-15. and 18-22.

We now use the definitions and lemmas presented earlier, along with set theory and
(5.5), to prove the first clause of (5.4). The first clause in (5.5), along with the definition of
A and the assumption that the databases (DS 1, tn) and (DS', tn) are temporally equivalent
implies that

Vr, r E R, VI, I E A,, Vt, t E: Valid(r(1)),
(3r,)... ( 3rk )( 31I~) ... (3INk),

(ri E TFT(R'I, ý0,) A ... A rk E TFT(R'k, ,

A IN1 E Interval( Valid(ri(Ij~j))) A...

A INk E Interval( Valid(rk(lkt))) (5.6)

A VI, 1 < I < n. Value(r(4L+j,)) = Value(rj,(4I,,,))
A ,O(r, X ... X rk)
A r, ((1,, 1, r, ),. . ., (ik. 1, xk))

A t E Eztend(-O,((Ij,j, IN,), ... , (1k,1, INk)),

Pred(-Sx((I,,1, IMl), . (I, ,, INO))))
)

Applying Lemma 5.1 and the definitions of TV, and T'k to (5.6) results in

Vr. r E R, VI. I E A,, Vt, t E Valid(r(I)),
( 3r'). .. ( 3r' ),

A Vl, 1 < 1 < n, l'alue(r(k+j,,)) = rý,(41',l)

A rk•(r'(Ii.). r•(Ik,.,)) (5.7)

A r.((11 ,1, Extend(r'(Fro,), Pred(r'(To)))),
(1k,, , Eztend(rk'(From), Pred(r'•(To)))))

A Vj, 1 5 j < k, Before( Pred(r•($Start)), 0.) A Before(4., r,(Stop))

A t E Eztend(0,,((Ih.1, Eztend(r'(From), Pred(r'(To)))), ....

(1k.1, Eztend(r'(From), Pred(r',(To))))),

Pred(.•.(( I,1, Eztend(r'(From), Pred(r' (To)))),.
(1k,.1, Extend( r' ( From ), Pred(r'(To))))))
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Applying Lemma 5.2 to (5.7) results in

Vr, r E R, VI, I E AR, Vt. t E Valid(r(I)),

(3r'i).. . (3r'),

(r' ER' A... Ar'E RI

A VI, 1 < I < n, l'alue(r(Ik+1,1)) = ri,(41,
T' (•,) ... , r'•(Ik..,,)) s )

Ar'((r'(From), r'(To)), ... I (r4(From), r'(To)))

AVj, 1 < j f k, Before(Pred(rj(Starx)), 4') A Before(,b', rj(Stop))
A t E Eztend(0'((r'(From), r'(To)), ... , (r'(From), r'(To))),

Pred(V ((r'(From), r'(To)), ..... (r•.(From), r•.(To))))

The third clause of (5.5) on page 110 implies that Vr, r E R, (31)(3t), I E AR A
t E Valid(r(l)). Hence, applying Lemma 5.3 and the tuple calculus statement for irk+, in
(5.2) on page 105 to (5.8) results in

Vr, r E R, VI, I E AR, Vt, t E Valid(r(I)),

3rk, (4+j E R

A VI, I C AR, Value(r(I)) = rk'+1(I)

A Before(Pred(rk4+ 1 (Start)), tn + 1)

A Before(tn + 1, rk+l(Stop))

A t E Eztend(r+ I(From), Pred(r4+,(To)))

)

Thus, the first clause of (5.4) is shown to hold. A similar argument can be made, starting
with the second main clause of (5.5), to show that the second clause of (5.4) holds. Since
(5.4) holds, R and TFT(RW+l, tn + 1) are equivalent and the transaction is the algebraic
equivalence of the indicated TQuel retrieve statement. I

5.3 TQuel Aggregates

TQucl aggregates (Snodgrass et al. 1987] are a superset of the Quel aggregates. Hence, each
of Quel's six non-unique aggregates (i.e., count, any, sum. avg, min, and max) and three
unique aggregates (i.e., countlU, sumU. and avgU) has a TQuel counterpart. The TQuel
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version of epich of these aggregates performs the same fundamental operation as its Quel
counterpart. with onte significant difference, Because a historical relation state represents
the changing value of its attributes and aggregates are computed from tihe entire state,
aggregates in TQuel return a distribution of values over time. Hence, while in Quel an
aggregate with no by-list returns a single value, in TQuel the same aggregate returns a
sequence of values, each assigned its valid times. When there is a by-list, an aggregate in
TQuel returns a sequence of values for each value of the attributes in the by-list.

Several aggregates are found only in TQuel: standard deviation (stdev and stdevU),
average time increment (avgti), the variability of time spacing (varts), oldest value
(first), newest value (last), From-To interval with the earliest From time (earliest),
and From-To interval with the latest From time (latest).

Each TQuel aggregate has a counterpart in our historical algebra. The algebraic
equivalences of TQuel aggregates are defined in terms of the historical aggregate functions

A and .4-0, which were defined in Section 3.4. Before defining the algebraic equivalences
of TQuel aggregates in the context of a TQuel retrieve statement however, we consider
the families of scalar aggregates that appear as parameters to A and XU in the algebraic
equivalences of TQuel aggregates. Each aggregate in one of these families of scalar aggre-
gates returns, for a partition of historical state R at time t, the same value returned by its
analogous TQuel scalar aggregate for a partition, at time t, of the temporal relation RW's
historical state at the time of transaction in, where R = TFT(Rk, tn).

5.3.1 Aggregate Functions

We define here the fatnilies of scalar aggregates that appear as parameters to i and AWU in
the algebraic equivalences of the TQuel aggregates count, counttU, f irst, and earliest.
We present these definitions to illustrate our approazch for defining the families of scalar
aggregates that appear in the algebraic equivalences of TQuel aggregates. The approach
can be used to define the families of scalar aggregates found in the algebraic equivalences
of the other TQuel aggregates as well. The aggregates count and countU illustrate how
conventional aggregate operators, now applied to historical states, can be handled. The
aggregate first is an example of an aggregate that evaluates to a non-temporal domain
such as character but uses an attribute's valid time in a way different from the conven-
tional aggregate operators. Finally, earliest illustrates an aggregate that evaluates to an
interval.

For the definitions that follow, let R be a historical state of m-tuples over the reiation
signature zR with attributes AiR = { I1, .... I,, I and Q be a historical state of m-tuples
over the relation signature zQ with attributes .4Q, where ,.4Q g AR.

Although the scalar aggregate Count, introduced on page 38, is sufficient to define the
algebraic equivalence of the TQuel aggregates count and countU for an aggregation window
"of length zero (i.e., an instantaneous aggregate), it is not sufficient to define the algebraic
equivalence of count and countU for an aggregation window of any other length. Hence,
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we define another family of scalar aggregates Countintj,, I <5 a :_ rn. that ac~ommodtes
aggregation windows of arbitrary length by counting intervall rather than values,

CountltT-o(q, t, R) = 1 lInterval( Vablid(r(,,)))I
rE4R

where 14 is an attribute of both Q and R. q C Q, and t E T7. Rcall that Interval, formally

defined in Appendix B, returns the set of intervals contained ia its argument. Hence.

Countint simply sums the number of intervals in the time-stamp of attribute 4. of each
tuple in R.

Next, we consider the TQuel aggregate first. This aggregate requires a family of
scalar aggregate functions Firstvalueio, 1 <_ a < m, where Firstvaluer, produces the oldest
,alue component of attribute 1,. That is,

Firstvalue,.(q, t, R) E {( jR R 0 - 3r. (r E R

A Vr', r' E R.

First( r(I, ) ) < First( r'( fa) )

A u = Value(r(I.))

)

A R = 0 - u = Nullvalue(,.)

}

where Nulivalue is an auxiliary function that returns a special null value for the domain
associated with its argument. Note that the set {u I ... ) need not be a singleton set. If
there are two or more elements in the set. Firstvalue returns only one element. that element
being selected arbitrarily. This procedure is the same as that used by the TQuel aggregate
first to select the oldest value component of an attribute when there are multiple values
that satisfy the selction criteria. If IR is empty, Firstvalue returns a special null value for
the domain azsociated with attribute I.

Finally, we define the algebraic equivalence of the TQuel aggregate earliesat. Unlike
other TQuel aggregates, which produce a distribution of scalar values over time, earliest
produces a distribution of intervals over time. Defining the algebraic equivalence of this
aggregate is slightly more complicated owing to this distinction. We first introduce k, family
of aux.iliary functions Orderlnt1 4 , 1 < a < m. that orders chronologically all distinguishable
intervals ih the time-stamp of attribute 4, for tuples of historical btate R.
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S = Orderlnti.(R) ,- (Vr)(VIN), (r E R A IN E Interval(Valid(r(a)))),
3V, 1 5_v <_ ISI ^A., IN

AVV. 1 :_ V < ISI,

(3r)(31N),(r E R A IN E Intetval(Vatid(r(I.))) A S6, = IN)

( First(S$v_t ) < tFirst( Sv )

V (First(S,,_.) = First(So) A Last(S|,_-) < Last(Sý)))

where S is a sequence of le::.gth jSI and S, ih the vth element of sequence S. Evaluating
Orderlntl 0 (R) results in asequence of the intervals appearing in the time-stamp of attribute
1, of tuples in R. 'The intervals are ordered from earliest starting time to latest starting
time. When two or more intervais have the same starting time, they are ordered from the
earliest; stopping time to the latest stopping time. The first clause states that each interval
in the time-stamp of attribute 1, of a tuple in R &ppears in S, the second clause states that
no additional intervals are present, and the third clause provides the ordering conditions.

Now, we zan define a family of scalar aggregate functions Posiiiont., 1 < a < m,
where Positiontl f rst identifies, for a tuple q and time t, the interval in the valid.time
component of attribute 1. in q that overlaps t and then calculates the position of that
interval in Orderlnt4M(R), for a historical state R. If no interval in the valid-time component
of attribute I,, ovi'rlaps t or the interval is not in Orderlntla(R), Positionj, returns zero.

Positionj*(q, t, R) = u -- ((3IN)(35,), (IN E Interval( Valid(q(Ia)))

A 1 < v ( JOrderlnti.(R)I

A S, E Orderlntro(R)

A t E IN A IN = S,)

U.t = v
A, ( (VIN )(V,5% ), (IN E Interval( Volid(q(la)))

A 1 <. v < IOrderlntt.(R)I

A Sw E OrderIntt.(R)

), 1 0 IN V IN 0 S
-- u = 0

Note that Position, unlike Countint and Firstvalue. requires parameters q and t, as well as
R.
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Now assume that we are given a family of scalar aggregate functions Smallesti.,
1 :5 a < m, where Smallestro produces the smallest value component of num.. • attribute
1. That is,

Smallestj.(q, t, R) = u " R 3r0 -, r, (r E R

A Vr', r' E R. Value(r(1')) :5 Value(r'(14))

A u = Value(r(10 ))

)

A R =0--. u 0

The families of scalar aggregates Position and Smallest aie both needed to define the
algebraic equivalence of the TQuel aggregate earliest for attribute 1r of relation state R".
First, Position is used to assign each interval in the time-stamp of attribute 1, of a tuple
in TFT(R') to an integer representing the interval's relative position in the chronological
ordering of intervals. Then, Smallest is used to determine, from this assignment of intervals
to integers, the time•i, if any, when each interval was the earliest interval. If we assume
an aggregation window function w(t) = 0 and an empty set of by-clause attributes, the
algebraic equivalence of the TQuel aggregate earliest for attribute A. of relation state R'
is

&Io..1ilfal .°.,,..,•11(,is-.11C.t1 0 146.,,1489, 0 .o.,,..,,, 0(Rposto-, Rp,.oiio ) >• Rpost.o) (5.9)

over the attributes Aearlieat = { eariesti, earieS12 } where

Rpo,,ito, = &1G..d,.,, 2 *o(APo,,tio,. oo. "I !.o,.-rh1 2 , I(R, R)) (5.10)

over the attribute .Apoio, = { [°hast2}.

EXAMPLE. Assume t aat we are given the historical state S6 from page 30 over the relation
signature Enrollment with the attributes {sname. state), duplicated below.

{ (("Phil", {1,3,4}), ("Kansas", {1,2,3})),

(("Phil", {1,3,4)), ("Utah", {4,5,6})),

(("Norman", {1,2,5,6)), ("Utah". {1,2,5,6})),

(("Norman", {1,2,5,6}), ("Texas", {7,8})) }

If we also assume an aggregation window function w(t) = 0 and an empty set of by-clause
attributes, then earliest for attribute state of historical state So is
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0
Ie.de.a,•1 =qr.i,,10, (.*Gri tsmaet o0, 1 46r812' 10"I"#II' 0( Rposi.•o., Xpo.to,) Rpoot.ion) =

( (1, {1,2)), (1, (1,2))),

((2, {3}), (2, {1,2,3)))

((3, {4,5,6}), (3, {4,5,6})),

((5, {7,8)), (5, {7,8))) }

where Rp,,,tio, is

Ie'*"4,48,2 i O(lApo.,sion, state. 140"24812 06(S 6 , 56)) -

{((1, {1,2))),

((2, {1,2.3})),

((3, {4,5, 6})),

((4, {5,6})),

((5, (7,8))) }

As illustrated in this example, the algebraic equivalence of earliest is a two-attribute
historical state. The valid-time component of the first attribute is the time when the valid-
time component of the second attribute was the earliest interval. Also note that the value
component of both attributes is the position of the valid-time component of the second
attribute in Orderlnt,4 (R).

5.3.2 In the Target List

In Section 5.2 we showed the algebraic equivalence of the TQuel retrieve statement without
aggregates. We now show the algebraic equivalence of a TQuel retrieve statement with
aggregates in its target list. We consider changes to the algebraic expression to support
one non-unique aggregate in the target list only; similar changes would be needed for each
additional aggregate in the target list.

Once again assume that we are given the TQuel database (d', tn) containing the k em-
bedded temporal relations R1, ... , R' on signatures z', ... , z that induce, respectively,
the attributes,

At = , , .. , hI,ml, From, To, Start, Stop}

Ak = (k, 1, *... Ik,m&, From, To. Start, Stop}

where, for notational convenience, we assume that 1 1, .... Iki, are unique. Also, let
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il, i•, ... , in and jl, j2, ... , j, be integers, not necessarily distinct, in the range I to
k, indicating the tuple variables (possibly repeated) appearing in the target list and
aggregate, respectively;

al, 1 < [I < n, be an integer in the range 1 to mi,, indicating the attribute names appear-
ing in the target list where (Vu)(Vv), (1 < u < n A 1 :5 v < n A u ; V A iu = i=),
au j a,;

Ch, 1 <_ h < p, be an integer in the range I to mjh, indicating the attribute names ap-
pearing in the aggregate where (Vu)(Vv), (1 _ u < _ p A 1 : v < u p 4 v A j,] = j),
c,, i c,; and

ji, J2, .... jp be the distinct integers in ji, J2,... jr, where Ji = jj, indicating the P
(non-repeated) tuple variables appearing in the aggregate.

Then. the TQuel retrieve statement with the aggregate fl in the taxget list has the following
syntax

range of r' is 11

range of r' is Ik

retrieve into persistent Ik+1(Ik+1,1 .Iii,81, *.. , n *t' i

-- f (r 1 .Iicj by r.l.I, ... ,r.!

for wI

where to (5.11)

when '))

valid from v' to x'

whore 0'

when r'

where d'( ), 1 _5 j < k, denotes the embedded temporal relation Rj. Again, we assume
that the statement is type correct for the database (d'. tn). The statement, when exe-
cuted on the database, creates a new relation denoted by /+J, computes a new embedded
temporal relation R'k+1 with attributes

Ak+1 = {!k+ii, ... . Ik+I,, Ik+1,n+l, From, To, Start, Stop}

and changes the database state d' to map I4+i onto this new relation. The for clause
specifies an aggregation window function for the aggregate fl. w contains one or more
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keywords that determine, along with the time granularity of R', ... , RI, the length
of the aggregation window at each time t. The keywords each instant represent the
aggregation window function w(t) = 0 (i.e., an instantaneous aggregate) and the keyword
ever represents the aggregation window function w(t) = oo (i.e., a cumulative aggregate).
The length of the aggregation window specified by other keywords (e.g., each day, each
week, each year) is a function of the underlying dime granularity of the database. For
example, if the time granularity is a day, then w' = each week translates to the aggregation
window function w(t) = 6. Also, the aggregation window function need not be a constant
function. For example, if the time granularity is a day, then w' = each month translates
to the aggregation window function w, where w(t) = 31 if t corresponds to January 31 and
w(t) = 28 if t corresponds to February 28. We let w, denote in our language the same
windowing function denoted by wl and the time granularity of R', ... , R' in IQuel.

Let ul, u2, ... , u, be integers, not necessarily distinct, in the range I to e where
signature zi maps attribute and DN maps domain name Iu,, onto value domain Pt,,I
1 <1 < n. Also assume •D,+t is the range of the aggregate f', where DN maps domain
name 1,,, onto D,.+,. Then, every TQuel retrieve statement of the form of (5.11) is
equivalent to a transaction in our language of the form

begin.transaction

dof ine-relat:ion(lk+j, temporal , (lk+l,l "lul, ., o k+l,n : lun # Ik+l,n+l , fun+, )) o

modify.relation(4k+1 , *, *,

*(Ik+I.1:m (it,, a Oil,.,) ... , 4+ln:m (I,,4. a Oi,,,n), (5.12)

rk+l,.+i: "= (01-,p 10 r-901,d) (
br. ([,,I:= axe:ond(v, Pred(X)) n r. I n... n r,,, n lp,

lagg,,p: w Extond(v, Pred(X)) n• r,,, I n.. -- nr,, I n r,,,,,p)(

od't and 42., -11 'r,91, and ... and ri.•,C, " as'- I,•,,_ (

A Ul , a) "k, .. O ;<((•a) Rgm)))

commit•.transaction

where

a,,,= A fi. Wi, I:-,. o, ,I,., (I•., ., Iy,. 1 ,) C

&r 01 (XII l, , a) k< .. -< Wi(p, OM))
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with attributes A..., = {4w~ ,.... l where Vu. 1 :5 u < p- 1, Iagg1,u "renames"

1j.+1,C÷+1 antd I~ssp is thc. attribute name associated with the aggregate value. Here we
assume that f, is the family of scalar aggregates (e.g., Countint) corresponding to the family
of TQuel aggregates f• (e,%., eou1tu). The expression denoted by (5.13) applies the whCre
and when predicates to the cartesian product of the relation states associated with tuples
variables appearing in the aggregate, and apph•,s the aggregate operator to the result. The
expression denoted by the fourth parameter of the modify.-relation command in (5.12)
differs oniy slightly from expression (5.3) on page 108 for a retrieve statement without
aggregates. The expanded selection operator provides the necessary linkage between the
attributes in the aggregate's by-list and corresponding attributes in the base rdation states.
The expanded derivation operator imposes the TQuel restriction that the valid time of
tuples in the derived state be the intersection of the valid time specified in the valid clause,
the valid times of the tuples in the base relation states participating in the aggregation.
and the valid time of the aggregate itself. Of course. if fl is a unique aggregate. then A"U
should be used instead of A in (5.13).

Three changes to (5.12) are required to handle special cases. First, if a tuple variable
j <, 1 a < p, does not appear outside the aggregate fl in (5.11), then . does not
appear in the second subscript of the 6 operator. Second, if J, appears neither outside the
aggregate fl in (5.11) nor in its by clause, then p( !h, a) does not appear in the sequence
of cartesian products. Third, if J, does not appear outside the aggregate and there is no
by clause, then B..19 is replaced by

R.101 0 "(historical, (,.1U: [..+, ), (4.11U : Nullvalue(h,,. 1 ) t all)]

R.0 991 k [historical, ( : 1U.+), (U.1, : Nullvalue(CI,+ 1 ) * a11))))))

where, for notational convenience, we assume that / simply renames I, *,,p. The first
change removes the restriction that the valid time of a tuple in the derived state must
intersect the valid time of at least one tuple in the base relation state associated with
tuple variable J., The second change ensures that. when J, appears neither outside the
aggregate nor in its by clause, output tuples are produced. even if the historical state
denoted by a,(I. , ) is empty. The third change ensures that, when ]1 does not appear
outside the aggregate and there is no by clau3e. a value (possibly a distinguished null value)
for the aggregate is specified at each time t, t E T

5.3.3 In the Inner Where Clause

Aggregates may also appear in the where, when, and valid clauses of a TQuel retrieve
statement. We now show the algebraic equivalences of TQuel retrieve statements with
aggregates in' these clauses, first presenting the algebraic equivalence of ' TQuel retrieve
statement with an aggregate in an mnner where clause. Assume that a TQuel z.ggregate f•
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appears in to in (5.11) and let

g1, g29 ... , gy be integers. not necessarily distinct, in the range 1 to k, indicating
the (possibly repeated) tuple variables appearing in the nested aggregate where
Vg., 1 < u _ y, 3j,, 1 < v < p, gu 2 jv;

bt, I < I <_ y, be an integer in the range 1 to m.,, indicating the attribute names appear-
ing in the nested aggregate where (Vu)(Vv), (1 _< u _< y A 1 < v < y A u 6 v A g, =
g,), bu # b.; and

91, g2, . .- , 9V be the distinct integers in gj, 92, gy where 1= -qi, indicating the
(non-repeated) tuple variables in the aggregate.

Then. f2 in t1I has the following syntax

f .(r9,1.4,,b, by r0 2 .4 2 b,, ... ,

for w2

where i

when r.)

As this TQuel retrieve statement is complicated, sontaining a nested aggregate with a full
complement of by, for, where, and when clauses, we should expect a somewhat complicated
algebraic equivalence. When modified to account for f2 in Ol, Rag.j becomes

R..gg,= *(Qj22,c2 -.. * I opC I 19ggl,P) (

A4 fit "46 !jICI 0 Iaggitpp (4 2 ,C2.1** "'jp,C,# 4as)
*(I,,o,, ... P, xj,, , I~on,) C(pul),, a) k .. - ,- ý Puy, a)

; [hi~storica~l,, k, cont -/,','.t.go,),t Uo,/€t 11 " 0 Qall) I,

*l, ", Im 1,e Iont) ( (5.14)

6a,2,p Y 1 4992 .... -Ic,. a Icon:,t n 'a•,: ,y) l

& VII and 12.,a. 62,11-90 1 and... S-ad 19,,b, " g2, y- (

i)Ih ) ;C -. - - k 39 a) R. X

[historical, o.nt fmnter•e,)t (Icong : ""1 a all))))))
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where the attribute name 4,,v,, again refers to the aggregate produced in A by fl, the
reference to the aggregate f2 in 0'4 is replaced by a reference to [9y•,, and

-Rq = f2 w• W2, , Igl, s,, lg..,,,. (r.2,62 , ... ,1 19, by)(

Ugb, ,1 ' , gI,b6, (P) ap , a) X ... k Augg, o

6r2, ( ,[§ :. Il,, I , , , . It 119 , m

over the attributes A,9.2 = {Ig29,l, .... ' agg.,,,), where Vu, 1 < u < y- 1, 'G9,t
"renames" Ig.+,, b,+•, .v is the attribute name associated with the aggregate value, and
f2 is the family of scalar aggregates corresponding to the family of TQuel aggregates f2.

The relation state { ((1, T)) } is used simply as a constant relation state containing
a single tuple whose value component may be an arbitrary element from an arbitrary
domain. Here, we effectively add the attribute 1c,,,t to A(lyl, 'D) k ... ý A(I4 p, t,) and
then use the attribute as au implicit by-list attribute to restrict tuples in the partition of
A(Ill, .) k ... k A(I, §,,) at time t to only those tuples that satisfy the predicate in 01
involving the aggregate f2 at time t.

5.3.4 In the Inner When Clause

Assume rnow that the aggregate f2 appears in rf in (5.12) rather than in 0'1. The only
aggregates that can appear in ri' are earliest and latesxt. Therefore, if we let R9 be
the two-attribute algebraic equivalence of f•, then the algebraic equivalence of fl would
be the same as that given in (5.14) for aan aggregate in the inner where clause, with one
exception. The reference to f2 in 7 is replaced by a reference to . not h,, The
valid-time component of ,g,2, 1 is the time when the valid-time component of ..72, y+I was
Lhe oldest interval, hence !,,+ is used in evaluating r7.

If we assume that f'• is earliest, then R09 12 is

- R~m= O189.2,51499,1+1 (

ATSMallestI. b4 , w2 , 142,V+, Ito9gV I (Ih,6a,.... I,,b )(

19 (Iiggaf+,1 1z2b 62 t ... I4 Iby) (Rp09 ,, 0i. A (1(, ar) a ... k jb(I'3 , k)),

a (R,.,,,1, alait IrIc,+aI, oagfl,,.y+1 I * g" 1 .g 99,, +, 1 (5.5l,)

~~~~~d 102, ( Rpsi.,o, k• A• ag, a) AUD..;•I• , OM)
; (Rposijon 0 [hixt ori cal, lagV,V+ I : lingg.r ag) , y,+: 1 "0 " 0al) ))
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over the attributes Aa,, -- •2 ,,, .... IgggU+1 where

Rpo0ition not (Iagg,V+1 0) (5.16)

A4 Posit~ion, inf init~y, 1,,' bi , Iagg2,y+1 , a ((• ). k(19,l a )))

The expression denoted by (5.15), while structurally equivalent to expression (5.9) on
page 116, is considerably more complex because of the presence of by, when, and where

clauses in the nested aggregate. The attributes of A's first argument now include the
attributes appearing in the by clause and the attributes of A's second argument include
the attributes of relation states associated with tuple variables appearing in the aggregate.

Also. tuples in the second argument are now required to satisfy the where predicate and, for
some interval in the time-stamp of attribute .1, bi, the when predicate. Finally, because
TQuel assumes earliest and latest return T for an empty partition of R', the tuple
((0, T)) is added to Rpoaiton so that T will be considered the earliest interval at those
times when the partition of A's second argument is empty. Recall that Smallest. defined
on page 116, returns zero when passed an empty relation state.

5.3.5 In the Outer Where Clause

Assume that the TQuel aggregate fl appears in 0' in (5.11) rather than in the target list.
Then, the algebraic equivalence of the TQuel retrieve statement is

begin.-transaction

define.relation(I&+i, temporal., (k+ia. :Iu1 9.... lk+÷l.n: Iu,,, I+,n+1:Jun,.)),

modify.relation(I&+i, *, *,

b r, (I.,1 :uExtend(v, Pred( \')) n l 1, l n ... f lly,, I , P,,.

14901 1p: a Ext:end (v, Pred (k)) nil,,, n ... n Iyp, I n A,., I P)(

d*eand Ir•, c2 I, la#, and .. - id Ijp, cp 4 ag,._ p-(

AU1 , a) i(Jk,a);cRa1g91))))

comit-t.ransact ion

where the reference to f in V is replaced by a reference to !.gg,,,,. Note that the only
other change from (5.12) is the elimination of attribute Igg,,p from the projection, since
the aggregate does not appear in the target list.
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5.3.6 In the Outer When Clause

Assume now that the aggregate fA appears in r' in (5.11). Then. the algebraic equivalence
of the TQuel retrieve statement is

begi:L.t-ransact ion
__def Ina~relation(jk+j, temporal , (lk+It: ful, .. P I+ Ln : I,, s + L. +1I : Iu,,+ ))

ml modif y_relation(1k+j, ,, ,,

*"(/k+1.1:- (/i,,.l © I4,,al) #, ,k+l.,,:" (/n,an',, ,-Q },.)) (

7-, /, -Ext end ( v, P r ad (y) N i-1 1A, I r... rl 1,,,l n'lagga, , ...p
8 ago,(I : -Extend (v, PredC(\)) nIljzl n .. .nI,,, n I02 ga,, )

6"•b nd l,c -, Iaog,, I and .. and lj~v=Ii gv_

-- •(I,, -) ;< ... (< 1k, a) ;<R,*,991 )

commit.-transaction

where the reference to fl in r is replaced by a reference to 'ag91,p+1. If the aggregate fl is
in v or X rather than r, analogous changes would be required.

5.3.7 Multiply-nested Aggregation

The approach described above for handling aggregates in the inner where and when clauses
can be used to handle aggregates in a qualifying where or when clause of an aggregate in
the outer where, when, or vzid clauses. This method of converting TQuel aggregates to
their algebraic equivalences, when there is an aggregate in a qualifying clause, can also
handle an arbitrary level of nesting of aggregates.

5.3.8 Correspondence Theorem

Now that all possible locations for aggregates in a TQuel retrieve statement have been
examined, we can assert that

Theorem 5.2 Every TQuel retrieve statement 'ias an equivalent transaction in our lan-
guage.

PROOF. Induct on the number of aggregates appearing in the statement to a'rive at an
equivalent algebraic expression, applying the replacements discussed above in Sections 5.3.2
through 5.3.6, as appropriate. Construct a tuple calculus expression for the retrieve state-
ment and the algebraic expression, then prove equivalence using the technique used in the
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proof of Theorem 2. While the proof is aided by the presence of auxiliary relation states
in the tuple calculus semantics for aggregates (Snodgrass 1987), it is still cumbersome and
offers little additional insight. I

5.4 TQuel Modification Statements

Having shown the algebraic equivalence of the TQuel retrieve statement, both with and
without aggregates. we now show the equivalent transaction in our language for each of
the TQuel modification statements.

5.4.1 Create Statement

The TQuel create statement. like its Quel counterpart. defines a new relation and provides
a signature and class for that relation. Keywords are used to specify the relation's class.
If the keyword persistent is used. the relation is either a rollback or temporal relation.
If the keyword interval or event is used. the relation is either a historical or temporal
relation. If none of these keywords is used, the relation is a conventional snapshot relation.
We show here the syntax for a TQuel statement that creates a temporal relation and the
statement's corresponding transaction in our language. Transactions for the other forms
of the TQuel create statement can be constructed in a similar fashion.

Let U1, U2, ... , u. be integers, not necessarily distinct, in the range 1 to e where
DN maps domain name Iu, onto value domain Dul, 1 < I < n. Then, the TQuel create
statement for an interval-based temporal relation has the following syntax.

create persistent interval I(M I,, ... -, In f, a,,)

As before. we assume the type correctness of this statement for the TQuel database (d', tn).
The statement, when executed on (d', tn), creates a new, empty relation denoted by I with
attributes

A = I'l, ... , I., From. To. Start. Stop)

and changes the database state d' to map I onto this new relation. The statement's
algebraic equivalence is the following transaction.

begin.-transaction

defini..relation(I, temporal, (I: lu, . : 1U.)

•. ¢o~mit.transaction
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If we let (d, tn) be the algebraic temporal equivalent of (d', tn), this transaction, when
executed on (d, tn), simply changes the database state d to make d(I) an empty temporal
relation with attributes fh 1 .... I,,) at transaction tu.

5.4.2 Append Statement

The TQuel append statement creates a new state for a relation by adding tuples to that
relation's current state. For the append statement (and the delete and replace statements
which follow), assume, as we did for the retrieve statement, that we are given the TQuel
database (dl, tn) containing the k embedded temporal relations R', ... , R' on signatures
X, ... I zkthat induce, respectively, the attributes,

A, = ({,1, ... , 1I.i, From, To, Start, Stop}

Ak = {fk,1, .... kmh, From. To, Start, Stop}

For notational convenience, assume that 11.1, ... , k. mk are unique. Also, assume that
(d', tn) contains the embedded temporal relation Rk+1 , not necessarily distinct from RX, .
RO, with attributes

Ak+1 = {A+1,1, .... lk+ln, From. To, Start, Stop)

Furthermore, let il, i2, ... , i, be integers, not necessarily distinct, in the range I to k
and at, 1 < 1 < n, be a distinct integer in the range 1 to mr,. Then, the TQuel append
statement has the following syntax

range of r' is I,

range of rý is Ik

append to 1'k+ ( Uk+ , I r i , r. P 1 1 n in

valid from v' to y'

where 0'

when r'

where d'(li), 1 :5 j 5 k + 1, denotes the embedded temporal relation Rj. Note that, unlike
the retrieve statement, no as-of clause is specified. TQuel assumes that changes are always
made to a relation's current state.
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Every TQuel append statement of this form is equivalent to a tran~saction in our
language of the following form.

beginotrannaction

modify.relat•on(+l, Ik.1 0 ((k+ll :"( iClI),',

lkl, : -(.- iln.)

6r, (I1,1 :=Extend(v, Pred(X)),

k,-"&h := Extend(v, Pred(0))(

•tp(Ii <.X I))

commit•.transaction

where d(Ij), 1 <: j < k + i. denotes the temporal relation Rj in (d, in). The transaction.
when executed on (d, in), first computes the tuples to be appended to relation Rk+1, then

does a historical union of Rk+1's current state and those tuples to produce a new relation
state, and finally appends this new relation state to Rk~+'s state sequence. The expression

used to compute the new tuples is structurally the same as expression (5.3) for a retrieve
statement, with one exception: it doesn't include any rollback operators because a tuple
variable in a TQuel modification statement always references a relation's current state.

5.4.3 Delete Statement

The TQuel delete statement creates a new state for a relation by removing tuples, or
portions of tuples, from that relation's current state. It has the following syntax.

range of r' is 11

range of r' is Ik

range of r'+1 is I

delete r'+,

valid from v' to x'

where 0'

when r'

Every TQuel delete statement of this form is equivalent to a transaction ,n our language
of the following form.
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begin.-transaction

modify.relation(4+i, * *k+ - (*(IUk+1,1,.4.+1,)

6b", (a1a:= [ij n Extend(v, Pred(Q)), ..

Ik+l,n :o ak+l,n n Extend(v, Pred (X)))(

a~u, lkXý: k+ID))))

commit-transaction

This transaction, when executed on (d, tn), first computes the temporal portions of tuples
in Rk+1 that are to be deleted, does a historical difference oi Rk+I's current state and
those buple portions to produce a new relation state, and then appends this new relation
state to Rk+1 s state sequence. The expression used to compute the tuple portions to be
deleted differs considerably from the expression for an append statement. R&+i's current
state appears in the sequence of cartesian products, oany attributes of R4+ 1 appear in the
projection, and the valid times of attributes in each output tuple are required to overlay
the valid times of attributes in the tuple's value-equivalent counterpart in Rk+1's current
state.

5.4.4 Replace Statement

The TQuel replace statement creates a new state for a relation by first removing tvpies, or
portions of tuples, from that relation's current state and then adding tuples to the resulting
state. It has the following syntax.

range of r' is 11

range of r' is 4k

replace r~k+1(Ik+1.1 s l/. n .

valid from V' to X'

whera v'

when rt

Every TQuel replace statement of this form is equivalent to a trans.1ction in our language
of the following form.
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begin,.transaction

modify.-rlation(Ik+l, *,*, (k+l - (*(Ik+1,1, 4...

6r, I.: , xnExtend(v, ProdQ))

Ik+l,m :- I-+I, P nxend(v, Pred(X) ) )

-&V(11 ... • Ik ;k Ik+)))))

k+1,,1 : - (41,,,,,l 0i i,,,, ) v

6r, (Itjj : Exte nd (v, Prod Q)C),..

Ik,•:u- xtend (v, Pred(X)) ))(

er~h (Iti < .. •Ik)))

commit-.ransaction

The transaction, when executed on (d, in), first computes the temporal portions of tuples
in Rk+i that are to be deleted and does a historical difference of Rk+1's current state and
those tuple portioaks to produce a new relation state. It then computes the new tuples
to be added and does a historical union of the relation state produced by the difference
operator and those tuples. Finally, it appends the resulting state to Rk+1's state sequence.
The transaction differs from a delete operation followed by an append operation, however,
because both the tuples to be deleted and the tuples to be added are computed from the
relation states curr."nt at the start of the transaction.

5.4.5 Destroy Statement

S

The TQuel destroy statement deletes a relation from the database. If the relation is a
snapshot or historical relation, it is physically deleted. If. however, the relation is a rollback
or temporal relation, it is only logically deleted. Rollback and temporal relations are
persistent and remain accessible via rollback operations, even after they are deleted.

range of r' in Ii

destroy i4

Every TQuel destroy statement of this form is equivalent to a t.ransaction in our language
of the following form.
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begin.-transaction

destroy 11

commit.•transaction

The destroy command, like the TQuel destroy statement, simply deletes the relation
denoted by 1 from the database. Snapshot and historical relations are physically deleted,
while rollback and temporal relations are only logically deleted.

5.4.6 Correspondence Theorem

Now that all TQuel modification statements have been examined, we can assert that

Theorem 5.3 Every TQuel modification statement has an equivalent transaction in our
language.

PROOF. Construct a tuple calculus expression for each TQuel modification statement and
its corresponding algebraic expression. Then prove equivalence using the technique used
in the proof of Theorem 2. While the proof is straightforward, it is cumbersome and offers
little additional insight. I

5.5 Language Correspondence

Theorem 5.4 Our language for database query and update. defined in Chapters 3 and 4,
has the ezpressive pouer of TQuel.

PROOF. This theorem follows directly from the correspondence theorems presented in
Sections 5.3.8 and 5.4.3. I

Theorem 5.5 Our language for database query and update is strictly more powerful than
TQuel.

PROOF. The previous theorem shows that the expressive power of our language is as
great as that of TQuel. Now, for two historical relation states R, and R2, consider the
algebraic expression RI ý R2. Because the semantics of TQuel requires that tuples rather
than attributes be time-stamped, this algebraic expression has no counterpart in TQuel.
Hence, our language is strictly more powerful than TQuel. I
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5.6 Summary

In this chapter we have shown that our language for database query and update has the
expressive power of the temporal query language TQuel. We have given, for each TQuel
statement, the transaction that is its algebraic equivalent. We first considered the basic
TQuel retrieve statement without aggregates and then more complex TQuel retrieve state.
ments with aggregates in their target lists, where clauses, and when clauses. Finally we
considered the create, append, delete, replace, and destroy modification statements. Hence,
we have shown that the language is sufficient in expressive power to serve as the underlying
evaluation mechanism for TQuel.

In the next chapter we extend the language defined in Chapters 3 and 4 to accommo-
date views.



Chapter 6

Adding Support for Views

A base relation is an autonomous, named relation stored in the database (Date 1986B]. It
is autonomous in that it is not defined in terms of other relations. In contrast, a view is a
named relation that is defined in terms of other named relations. either base relations or
other views [Chamberlin et al. 1975, Date 1986B]. A view definition is simply the algebraic
expression that defines the scheme and state of a view. Whereas base relations axe stored
in the database, views may, but need not, be stored in the database. We illustrate the
relationship between views and base relations by a simple example.

EXAMPLE. Let S denote a snapshot relation whose current signature specifies the at-
tributes fsname, course) and whose current state is

{ ("Phil", "English"), ("Norman", "English") , ("Norman", "Math") }

Now consider the three views SP, SM, and SU, each defined by the command define.view,
whose arguments are the identifier that names the view and the expression that defines the
view.

defino-viev(SP, osname-o'Phil" (S))

dof ne-.view(SN, ouname-"Marilyn" (S))

deftino.viev(SU, 7r (onamo) (SPUSM))

SP and SM are views, defined in terms of the snapshot relation S. Their signatures, like
that of S, specify the attributes {sname. coursue. SP's state contains the single tuple
("Phil", "English") and SN's state is empty. SU is also a view, but has only the attribute
snam in its signature. SU's state contains the single tuple ("Phil"). SP and SN. because
they are defined in terms of S, depend on S. Similarly, SU, because it is defined in terms of SP
and SN, depends indirectly on S. The view dependency graph for S is given in Figure 6.1. 0

Base relations, becaus~e they are autonomous, change only when transactions contain-

ing commands that explicitly name the relations are executed. In contrast. views, because
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Figure 6.1: View Dependency Graph for Base Relation S

they are functions of other relations, change whenever one of their underlying relations
changes. For example, a change to either the scheme or state of S would propagate to
views SP, SM, and SU. Views have several advantages. They simplify the users' percep-
tions of the database, allow users to see the same data differently, and provide security by
hiding data from users [Date 1986D]. They also can be used to represent stored recurring
queries. In Chapters 3 and 4 we defined an algebraic language for query and update of
temporal databases containing base relations only. In this chapter we extend our language
to accommodate views as well as base relations. We consider the problem of maintaining
views in a temporal database in which both the scheme and state of base relations are
allowed to change over time. The problem of updating databases through views (i.e, map-
ping user-specified updater to views onto updates to the views' underlying relations) is not
considered; this problem has already been studied extensively, with generally discouraging
results (Bancilhon & Spyratos 1981, Cosmadakis & Papadimitriou 1984, Furtado et al.
1979, Furtado & Casanova 1985, Keller 1985, Keller 1986].

6.1 Background

There are two basic strategiei for maintaining a view. One stiategy, which is the tradi-
tional way of maintaining a view, is to store only the view definition in the database and to
use query modification to convert queries against the view into queries against the view's
underlying base relations [Stonebraker 1975]. In this strategy, a query that contains refer-
ence(s) to a view is syntactically augmented before being evaluated: Each reference to the
view is replaced with the view's definition, and the resulting query, which contains only
references to base relations, is optimized and then evaluated.
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EXAMPLE. Under query modification, the expression
arcoursew'°English"' (sr)

would be converted to the equivalent expression

osname="Phil" and course="English' (S)

and then evaluated. r3

Query modification requires only that view definitions be stored in the database.
Because neither the class, signature, nor state of a view is ever computed and stored in the
database, views maintained using this strategy are referred to as unmaterialized views. A
variation of this strategy, which we refer to as in-line view evaluation, is simply to evaluate.
whenever a query is executed, the definition of each view named in the query and to treat
the resulting views as constant relation states in the query, without storing them in the
database.

The other strategy for maintaining a view is to store the class, signature, and state
of the view. along with its definition, in the database and tj treat queries against the view
identically to querie3 against a base relation, Views maintained using this strategy are
referred to as materialized views. The strategy has several variations, e•.ch characterized
by when and how a view is updated to reflect changes to its underlying relations. A ma-
terialized view can be updated any time after a change to one of its underlying relations
as long as its type (i.e., class and signature) and state are consistent with the type and
state of each of its underlying relations whenever it is accessed during query evaluation.
There is a spectrum of update strategies that satisfy this criterion, the possible strategies
being bounded by update immediately after each change to an underlying relation and by
update, if required, just before an access during query evaluation. These strategies are
referred to, respectively, as immediate view materialization and deferred view materializa-
tion (Hanson 1987A, Roussopoulos 1987]. Orthogonally, recomputed view materialization
refers to a strategy in which a view is updated by recomputing the entire view while in-
cremental view materialization refers to a strategy in which a view is updated using a dif-
ferential update algorithm [Blakeley et al. 1986A, Hanson 1987A, Hanson 1987B, Horwitz
1985, Horwitz & Teitelbaum 1986]. Hence, four of the strategies for maintaining material-
ized views are immediate-recomputed. immediate-incremental, deferred-recomputed, and
deferred-incremental.

Figure 6.2 classifies database relations by type and view maintenance strategy. We
assume that base relations, unlike views, are always materialized and that updates to base
relations are always immediate, never deferred. It is important to note that the presence of
views and the choice of a view maintenance strategy can affect the performance, but not the
results, of query processing. Execution of a query that references a view always produces
the same result as execution of its equivalent query after query nmodification, independent
of the strategy used to maintain the view.

Although to our knowledge there has been no previous work on maintenance of views
in temporal databases, there has been considerable research applicable to incremental ma-
terializaticn of views in snapshot databases. Incremental view materialization brings a
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Figure 6.2: Classification of Relations by Type and View Maintenance Strategy

view up-to-date following the update of one of its underlying relations by identifying the
changes that must be made to the view's old state for the view's new state to be consis-
tent wth the new states of its underw-ing relations, without having to recompute the view
itself (Blakeley et al. 1986A]. The changes an update operation makes to a stored relation,
either a base relation or a materialized view, are refeired to as a differential. Severance
and Lohman have discussed the application of differential files to the maintenance of large
databases (Severance #; Lohman 1976]. and "'oodfill and Stonebraker have proposed that
hypothetical relations be implemented using differential files (Woodfill & Stonebraker 1983].
Koenig and Paige have applied the transformational techniques of finite differencing to the
automatic maintenance of derived data in the context of a function/binary association data
model [Koenig & Paige 1981]. Shrnueli and Itai have proposed a structure for incremen-
tally maintaining materialized views in acyclic databases where views are restricted to the
projection of attributes over the natural join of all relaticns in the database [Shmueli &
Atal 1984]. Sufficient and necessary conditions for detecting updates to bass relations that
cannot affect views have been identified (Blakeley et al. 1986B] and incremental versions
of the snapshot algebra have been defined (Blakeley et al. 1986A, Horwitz 1985. Horwitz
& Teitelbaum 1986].

Hanson has compared the efficiency of several strategies for maintaining views in
snapshot databases (Hanson 1987A, Hanson 19881. Ilis work shows that the efficiency
of view maintenance depends heavily on the database processing environment and that
no single strategy is always the most efficient. If database operations are predominately
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updates, query modification is shown to• be more efficient than other view maintenance
strategies, primarily because the performance of incremental view niaterialization degrades
severely as the percentage of operations that are updates increases. Incremental view
materialization, however, is shown to be more efficient than either query modification or
recomputed view materialization if five conditions are satisfied simultaneously: (1) the
number of queries against a view is sufficiently higher than the number of updates to
its underlying relations, (2) the sizes of the underlying relations are sufficiently large,
(3) the selectivity factor of the view predicate is sufficiently low, (4) the percentage of
the view retrieved by queries is sufficiently high, and (5) the volatility of the underlying
relations, defined as the percentage of tuples that change between accesses to the view,
is sufficiently low. Also. Roussopoulos has shown that incremental view materialization is
more efficient than recomputed view materialization, and sometimes significantly so, under
similar conditions (Roussopoulos 1987].

Differentials and incremental update also have been shown to have application in the
maintenance of snapshots. another form of derived relation similar to. but distinct from.
views (Adiba & Lindsay 1980]. Snapshots are base relations that are derived from other
base relations. Unlike views, which are dynamic and change with each change to their
underlying relations. snapshots are static and only change, once defined, when they are
refreshed. Incremental apdate using differentials has been shown to be more efficient than
expression re-evaluation as a snapshot refresh strategy when the update activity between
refreshes is low and the percentage of the base relations retrieved into the snapshot is high
[Lindsay et al. 1986]. These conditions are analogous to those under which incremental
view materialization is the preferred view maintenance strategy. In the context of support
for differential snapshot refresh, Kahler and Risnes have proposed two methods, sequential
logging and condensed logging, for maintaining a base relation's differential. In sequential
logging, a relation's differential is simply a sequentially ordered log of all changes to the
relation since the last refresh. In condensed logging, a relation's differential is a set of pairs,
each pair containing, for a tuple that has undergone a net change since the last refresh.
the tuple's image just bei'ore the last refresh and the tuple's image after the last update
[K'ahler & Itisnes 1987].

6.2 Approach

Because no view maintenance strategy is the most efficient strategy for all database pro-
cessing environments, cur goal in this chapter is to extend our language sufficiently to
support both unmaterialized and materialized views. We extend the language to accom-
modate query modification and in-line view evaluation when views are unmaterialized and
the immediate-recomputed and immediate-incremental strategies when views are mate-
rialized. The additional changes that would be required to accommodate deferred view
materialization are straightforward and are discussed informally in the next chapter. New
commands are needed to define views and to specify view maintenance strategies. Also, the
semantics of existing commands must be extended to account for the presence of views in
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the database. Furthermore, because the language allows the scheme, as well as the state,
of a base relation to change over time, existing commands must be redefined to allow only
changes to a base relation's scheme consistent with the definition of all views that depend
on the relation. Finally, incremental versions of the snapshot and historical algebras, de-
fined in terms of relation states and differentials rather than just relation states, are needed
to support incremental view materialization.

We emphasize support for incremental materialization of views because this strategy
likely will be applicable to an even larger subclass of views in temporal databases than in
snapshot databases. The probability that incremental view materialization is the preferred
strategy is unchanged if a view is defined as a function of the current state of a snapshot
or rollback relation. The probability, however, is higher, and possibly substantially higher,
if the view is defined as a function of the current state of a historical or temporal relation
or the past state of a rollback or temporal relation. The cost of evaluating an algebraic
expression involving historical states will be greater than the cost of evaluating the ex-
pression's snapshot analogue because additional processing will be required to handle valid
time. Also, the current state of a historical or temporal relation. because it monels objects
over time rather than at one instant, typically will be larger than its analogous snapshot
state. Similarly, because information about an object's past is less likely to be changed,
once recorded, than information about the object's present, the current state of a historical
or temporal relation typically will be less volatile than its snapshot counterpart. Hence,
the current state of a historical or temporal relation typically will be both larger and less
volatile than its snapshot counterpart. Furthermore, past states of rollback and temporal
relations experience no volatility as they can never be changed. These conditions, large
size and low volatility, are exactly the conditions under which incremental materialization
is the preferred view maintenance strategy. Finally, incremental view materialization likely
will be most applicable to views that denote stored. recurring historical queries, because
all tuples in the view would be retrieved on each view access (i.e., execution of the stored
query).

In the next section. we use existing algorithms for the incremental maintenance of
views in snapshot databases [Blakeley et al. 1986A. Hanson 1987A, Horwitz 1985, Horwitz
& Teitelbaum 1986] in defining an incremental version of the snapshot algebra. We then
adapt these same algorithms to the incremental update of historical views in defining
an incremental version of our historical algebra. After defining incremental versions of
the snapshot and historical algebras, we extend the language defined in Chapter 4 to
accommodate views. We add three new commands to the language's syntax. redefine the
semantic functions for type checking and expression evaluation to account for views, define
the semantics of the new commands, and extend the semantics of all existing commands
to account for views. We conclude the chapter with a discussion of the restrictions the
presence of views has on scheme evolution of base relations.
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6.3 Incremental Snapshot Algebra

For materialized views of snapshot relations, incremental view materialization brings the

view up..tc-date following the update of one of its underlying relations by identifying the
tuples that must be inserted into, and the tuples that must be deleted from, the -.iew's
old state for the view's new state to be consistent with the new states of its underlying
relations, without having to recompute the view itself [Blakeley et il. 1986A]. The net
changes (i.e., tuples inserted and tuples deleted) that an update operation makes to a
stored relation, either a base relation or a materialized view, is the relation's differential.
To support incremental view materialization, we need to be able to map the old states
of a view's underlying relations and their differentials for an update operation onto the
view's corresponding differential for the same update operation. The conventional snapshot
algebra, however, does not support this capability, as snapshot operators map either one
or two relation states onto a relation state. Hence, in this section we define an incremental
version of the snapshot algebra in which each operator is defined as a mapping from either
one relation state and its differential or two relation states and their differentials onto a
resulting relation state and its corresponding differential.

We first define the function S_.Differential that computes a snapshot differential and
the function S.-Update that maps a snapshot relation's state just before an update and its
differential for that update onto its state immediately after the update. Then, we define
an incremental version of the five operators that serve to define the snapshot algebra

6.3.1 Snapshot Differential

We define the differential for an update operation on a snapshot relation as the set of ordered
pairs that records the before and after images of all tuples that the update changes. Assume
that we are given the snapshot relation R. Let R6 be R's state just before an update and R.
be R's state immediately after the apdate. (Throughout this chapter, we use the subscript
"b" to denote "before" and "a" to denote "after.") We can define the differential AR for
the update in terms of the function SDiffcrential as follows.

$_Differenti.1: [$APSI'HOT STA17 x $/AP•17HOT ST.A' -

SA4AP$HOT P•.F.ME.,7A. 4C

Alt 1- S.Differential(Rb, R.) = {(rb, r.) I (rb = NIL A r. E R. - Rb)

V(rbE Rb-R. A r. =NIL)}

AR denotes the changes to Rb that produce R,. Tuple insertion is denoted by a pair whose
first component is NIL -ad whose second component is the inserted tuple. Tuple deletion is
denoted by a pair whose first component is the deleted tuple and whose second component
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iS NIL. Tuple replacement is denoted by a pair denoting tuple deletion and a pair denoting
tuple insertion, each pair containing exactly one componert whose value is NIL. Also, a
tuple appears as a component of al most one pair. Hience, A R denotes the net changes to
Rb.

EXAMPLE. Let S, as in the example on page 132, denote a snapshot relation state whose
current signature specifies the attributes {snsme, course). Now consider the update op-
eration where

Sb = ' ("Phil", "English"), and S" = { ("Phil", "English"),

("Norman", "English") , ("Norman", "English")

("Norman", "Math") } ("Marilyn", "Math") }

Then. A= (("Norman". "Math"), NIL),

(NIL, ("Marilyn", "Math") ) I}

Here, we change the relation state S6 by deleting the tuple ("Norman", "Math") and
inserting the tuple ("Marilyn", "Math"). a

In defining a. snapshot differential, we have followed the method of Kahler and Risnes
for condensed logging (Kahler & Risnes 1987]. In previous incremental versions of the
snapshot algebra [Blakeley et al. 1986A, Hanson 1987A, Horwitz & Teitelbaum 1986],
changes to a snapshot state have been represented by two differentials, a positive differential
(i.e., the tuples inserted) and a negative differential (i.e., the tuples deleted). AR is simply
an encoding of these two differentials as a single differential. We introduce the notion of
a single differential now to make the definition of a snapshot differential analogous to that
of a historical differential. As we will see later, denoting changes to a historical state as a
single differential simplifies somewhat definition of the incremental historical operators.

We can also define a. function S.Update that maps a snapshot relation's state just
before an update and its differential for that update onto its state immediately after the
update.

SUpdate :(SAAPS7OT STATfl e SgAPSUOT D.IYY&.T4ZA£ ] --

SAWSH OT STA T
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S.Update(Rb, AR)

if 3rb3 r.,(rb, r.) EAR

then if rb = NIL

then S..Update(Rb, AR - {(rb, rU)}) U {r.}

else S..Update(Rb, AR - {(rb, r.)}) - {rb}

else R,

S.Update simply applies the changes denoted by the elements of AR to Rb, one at a time.
Because AR denotes the net changes to Rb, the order in which the changes are applied
is arbitrary. Also, because AR denotes the changes to Rb that produce R., Rb and AR
together denote R0.

EXAMPLE. Suppose we let S6, S., and As be as defined in the previous example. Then.
S.Update(Sb, AS) = Sa holds. 3

6.3.2 Incremental Snapshot Operators

Unfortunately, the incremental snapshot operators can't be defined in terms of differentials
alone. As we will see shortly, the output differential for each operator, except that for the
selection operator, depends on an input relation's state just before an update as well as the
input relation's differential for the update. Hence, both relation states and differentials are
required as inputs to the incremental operators. Furthermore, because the output of one
operator must be acceptable as input to another operator, the output of each operator must
include, for definitional purposes, its output relation's state just before an update. as well as
its output relation s differential for the update. Note. however, that this requirement need
not be extended to an implementation of the algebra. If an implementation were to cache,
either virtually or physically, the input relations to each operator, only differentials would
need to be computed and passed among operators. Hence, while an implementation of the
incremental algebra based directly on the following formalization is impractical, the algebra
can serve as the basis for efficient maintenance of views when incremental materialization
is the preferred view maintenance strategy and intermediate r.!Sults between successive
evaluations of the view definition are cache!.

We can now define the incremental snapshot operators orr", U1, -', and x1, coire-
sponding to the snapshot operators o, 7r, U, -, and x. respectively, such that:

e The sr.,pshot state deaoted by the snapshot state and differential produced by an
incremental unary snapshot operator is equivalent to the snapshot state produced by
the corresponding unary snapshot operator.

uop [ SA(,7ST OT STA7E x SVNAPS' OT VZ'y•'C1A7TAC ] -
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[ ARAPHCOrY S747 x $WA.4P$6WT VFY WJ''lALCV ]

S.-Update(uop"AR, An)) * uop(S..Update(R. An))

* The snapshot state denoted by the snapshot state and differential produced by an
Incremental binary snapshot operator analogously is equivalent to the snapshot state
produced by the curresponding binary snapshot operator.

bopl: S[KASUOT STAT• x SAU4PSHOT DIY.F"CtAM£AZ Ix

[SArAS"HOT ST7TA. x SAP.,P,.OT VIYY X7WT'."& AC]] -C

"[SArAPsnoT STATt x SArAPSIHOT V.IF•3• XA24/]

S..Update(bop(Q, AQ, R. AR)) - bop(S.Update(Q, AQ), S.Update(R, AqR))

Let R be a snapshot state of m-tuples on the relation signature :. with attributes
A {fl, .... I.,}. and AR be a, snapshot differential for R. Also. let F be a boolean
function as defined in Section 3.3.4. Then incremental snapshot selection is defined as

4'(R, AR) A (ap(R),

((NIL, r-) I (NIL, r) C-A A F(r)}

U ((r', NIL) I (r, NIL) E An A F(r)})

The output differential contains only those tuples either inserted into or deleted from R that
satisfy the predicate. Note that the output differential depends on the input differential
and the predicate only; it does not depend on R. Selection is the only incremental snapshot
operator that can be defined independently of its input relation state(s).

Now, assume that we are given a set of identifiers X of cardinality n. where X g A.

ir .(R, Al) 4- (rx(R),

{ (NL, u") I3r, ((NIL, r) E An A VI. I C X. u(1) = r(!)

A Vr', r' E R, 31, I E X A r'(1) 0 u(I))}

U {(un, NIL) 1 3r, ((r, NIL) IE AR A VI, I E X, u(1) = r(I)

AVr' (r' 0 r A ((r' E Ri A (r',NIL) # AR) V (NIL, r') E AR)),

U!, I E X A r'(1) $ u(I))})

Note that incrementzl projection, unlike incremental selection, depends on both its input
relation state and its input differeatial. The defi~fitiz, acrounts for the possibility that two
or more tuples in R can have identical valucs for attribates X. A tupie inserted into R
causes a tuple to be inserted into the projection of R only if thare is no other tuple in R's
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old state that has the name values as the inserted tuple for attributes X. Likewise, a tuple
deleted from R causes a tuple to be deleted from the projection of R only if there is no
tteple in R's new state that has the same values as the deleted tupie for attributes X.

Let Q also be a snapshot state of m.tuples over the relation signature z with attributes

A -- { 14, ... , 4• ) and let AQ be a snapshot differential for Q.

(Q, AQ) U' (R,A R) A- (q u R,

{(NIL, u") I '(NIL, u) E AQ A u % R) V ((NIL, u) EAR A i )

U { (u'n, NIL) I ((u, NIL) E Aq A (NIL. U) VAlR A (U 0 P V (U, NIL) E AR))

V ((U, NIL) E AR A (NIL. U) 0 AQ A (Us V Q V (Us, NIL) C A,))J)

Incremental union is a symmetric operator; it treats elements in :Q and AR in an identical
fashion. A tuple inserted into Q is inserted into Q U R only if it is not in A's old state aisd
a tuple deleted front Q is deleted from Q U R only if it is not in R's new state. Changee
to R are handled analogously.

(Q, AQ) -,(]R, Ajq) A- (Q - R,

((NIL, U') ((NIL, u) E AQ A (NIL, U) V AR A (u V R v (U, NIL) E ,.))

V ((U, NIL) 6 AR A ((NIL, U) • A6Q V (u 4.: Q A (u N,) N IL )))}

U ( (U", NIL) I ((, NIL) E Aq A u 0 R) V ((NIL, u) E AR A u E Q)})

Incremental difference, unlike incremental utdon, is asymmetric. Insertion of tuples into Q
causes insertion of tuples into Q - R, wheream insertion of tuples into R causes deletion of
tuples from Q - R. Also, deletion of tuples from Q causes deletion of tuples from Q - R.
whereas deletion of tuples from R causes insertion of tuples into Q - R. A tuple is inserted

into Q - R if (1) it is inserted into Q and it is not in R's new state or (2) it is deleted from
R and it is in Q's new state. A tuple is deleted from Q - R if (1) it is deleted from Q and
it is not in R's old state or (2) it is inserted into R and it is in Q's old state.

Now, let Q be a snapshot state of m.-taples on the relation signature zq with at-

tributes Aq = { rQ,5, .... Ql,m, .1 R be a snapshot state of 2-tuple3 on the relation signa-
ture zR with attributes AR = { !R,1, ... , h,.,m, }, and AQ and AR be snapshot differentials
for Q and R, respectively. Also assume that AQ n AR = 0.
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S'(Q, 41) xz (,R, AR) (Q X R,

((NIL. Um I+PV2) I ((3q, (NIL, q) E Aq A VL, I E AQ, u(1) = q(1))

A (3r, (((IL, r) E An V (r E R A (r, NIL) 0 AR))

A^V, I E AR, u(I) = r(I)))

v((3r, (NIL, r) E AR A V1, I E AR, u(I) = r(I))

A (3q, ((NIL, q) E AQ V (q E Q A (q, NIL) 0 AQ))

A V1, I e AQ, u(I)- q(I)))}

U( ((U"l+'2, NIL) I ((3q, (q, NIL) E Aq A VI, I E AQ, U(1) - q(I))

A (3r, r E R A V1, 1 E AR, u(I) = r(I)))

V((3r, (r, NIL) E AR A VI. I E AR, u(1) = r(I))

A (3q, q E Q A V1, I .Aq, u(W) = q(I)))})

Ircremental cartesian product, like incremental union, is symmetric. A tuple inserted into
Q causes a tuple to be inserted into Q x R for each tuple in R's new state and a tuple
deleted from Q causes a tuple to be deleted from Q x R for each tuple in R's old state.
Changes to R are handled analogously.

6.4 Incremental Historical Algebra

In this section we define an incremental version of our historical algebra in which each
operator is defined as a mapping from either one relation state and its differential or two
relation stater and their differentials onto a resulting relation state ard its corresponding
differential.

We first define the function ff.Differcntial that computes a historical differential and
the function I, Update that maps a historical relation's state just before an update and its
differential for that update onto its state immediately after the update. Then. we define
incremental versions of the historical operators introduced in Chapter 3.

6.4.1 Historical Differential

We define the differential for an update operation on a historical relation, lEke that for an
update operation on a snapshot relation, as the set of ordered pairs that records the before
and after images of all tupies that the update changes. Assume that we are given the
historical relation R over the relation signature z with attributes A = { 1, ... , I4 }. If we
let R6 be R's state just before an update and R, be R's state immediately after the update,
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we can define the differentlaA AR for the update in terms of the function H.Differential a

follows.

IHDifferential: [ 7"ITOZ7S TCAI STA27 x RZST7M1"ICAI r STA7f] -

%W7-OSt7RTCAL 2IFtR1•?2 V AC

AR= 1.Differential(Rb, R.) =

{(rb, r,)I (rb = NILA r. R

AVr, r E Rb, 31, I E A A Value(r(I)) # Value(r.(I)))

V (rb E R6 A ra . NIL

AVr, r E R,, 31. I E A A Value(r(I)) 0 Value(rb(I)))

V(rb ERb A r, ER, A rb #r

AV1, I E A. Value(rb(1)) = Value(ra(1))))

AR denotes the changes to Rb that produce R.. As before, insertion of a tuple without a
value-equivalent couvterpart in Rb is denoted by a pair whose first component is NIL and
whose second component is the inserted tuple. Deletion of an entire tuple is denoted by
a pair whose first component is the deleted tuple and whose second component is NIL. A
change to a tuple in Rb that does not require the tuple's deletion (i.e., a change to the
valid-time component, but not the value component, of one or more attributes) is denoted
by a pair whose first component is the tuple's image before the change and whose second
component is the tuple's image after the change. This third possibility, although not
present in the snapshot differential, is needed here to record the before and after images of
a changed tuple as a single pair. Note that, if both components of a pair ace tuples. then
the tuples must be value-equivalent, but not equal. Also. if a tuple appears as a component
in one pair, then neither it nor any value-equivalent tupic can appear as a component of
any other pair. Hence, each pair in the differential denotes an inserted tuple, a deleted
tuple, or the net change to a tuple in Rb. 4R, like its snapshot counterpart, denotes the
net changes to Rb.

EXAMPLE. Let H denote a historical relation whose current signature specifies the at-
tributes {sname, course). Now consider the update operation where
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Hib = { (("Phil", {1,3.4)), ("English", {1,3,4)))

(("Norman", {1,2)), ("English", (1,2))),

(("Norman", {5,6}), ("Math", (5,6))) }

and H, = { (("Phil", {3,4)), ("English", (3,41)),

(("Norman", {1,2}), ("English", {1,2))),

(("Marilyn", {3,4}), ("Math", (3,4))) }

Then. AH { ((("Phil", {1,3,4}), ("English", {1,3,4))),

(("Phil", (3,4)), ("English", {3,41))),

((("Norman". {5,6}), ("Math", (5,6))), NIL),

(NIL, (("Marilyn", {3,4}), ("Math". {3,4)) ) }

Here, we change one tuple, delete one tuple, and insert another tuple. 0

We can also define a function H.Update that maps a historical relation's state just
before an update and its differential for that update onto its state immediately after the

update.

H.Update :[ 7ISTO7MICAL STA7E x 7WS7TZZCAC VIF•YtFMAMTI.4£ ] .-

7XTSTV7 ICAC STATE

H.Update(Rb, AR) =
if 3rb3r.,(rb, r.) E AR

then if rb = NIL

then H.Update(Rb, AR - {(rb, r.))) (r.)

else if r, = NIL

then H.Update(Rb, AR -- {(rb, r.))) f {rb)

else H.Update(Rb, AR -- (rb, r.)}) f rb} C fr.}

else Rb

H.Update simply applies the changes denoted by the elements of AR to Rb, one at a time.
Because each element in AR denotes a tuple insertion, a tuple deletion, or the net change
to a tuple in Rb, the order in which the changes are applied is arbitrary. Also, because AR
denotes the changes to Rb that produce R., AR and Rb together denote R,.
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EXAMPLE. If we let 116, HI., and the differential AH be as defined in the previous example,
then H.Update(H6, Alj) = H. holds. 0

6.4.2 Historical Operators

We can now define the incremental historical operators &1, 6', *1, 0i1, -ý 1 , A-- -- [, t),
V , v' and _I. such that the incremental operators are consistent, as defined by H.Update.

with their non-incremental counterparts.

"p' : ZSTOR7ZCA4 S1A., x RTS'r, ZCA, V.TYY•FC•.l •`A4] --

[ ISTO77ZICA.C S24", x NTIS7O=•1CAI7Z VIYC1?TFt '7IAC

H.Update(G-o'"'(R, AR)) a a'P(IHUpdate(R, AR))

bop' : [[�(�RIS=TCA4- STATl x NTSI 1%7TO CAI 'D r £i.tVF)TAC ]x

[(1tZ$S7'CALC STA-7 x NIS1t"OZCAL vDZYt'.eU1T•AC ] --

[ ifZSTOIZCA.- STATE x 1-a•"'=Z27CAC VZY. A'T AI

JLUpdate(bp'(Q, Aq, R, Ar)) a 6Zp(JLUpdate(Q, AQ), H-.Update(R, &it))

As with the incremental snapshot operators, incremental historical operators can't be de-
fined in terms of differentials alone. Their output differentials also depend on an input
relation's state just before an update as well as the input relation's differential for the
update.

Before defining the operators, we introduce two auxiliary functions, VECounterpart
and Unchanged, which are used in defining two or more of the operators. For their defini-
tions, and the definitions to follow, let Q and R be historical states of m-tuples over the
relation signature z with attributes .4 = { I,, ... , I'm } and let AQ and AR be historical
differentials for Q and R, respectively.

VECounterpari returns the before and after images of a tuple obtained from a rela-
tion's state just before an update and its differential for the update. The tuple returned is
the value-equivalent counterpart of a given tuple, where the given tuple is itself specified
by its before and after images for an update. If the relation state and differential contain
no value-equivalent tuple for the given tuple, VECounterpart returns (NIL, NIL).

VECounterpart:

N[[[Is=t2mzCAC •UPC• + {NfL} N X [ I2S7T7,ICA4 2UPC$ +{NIL} I x

NI-Z'" TCAC STA7V x h-TS7V7XCAL VIFFMfl&NTLIAC ] -

[[7iISTrOZCAC .U.PL + {NIL} ] x [ ISto)zCA. 7UP: + {f} NI
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VECounterpart((q6 , q,), R. AR) =

if ((qb # NIL A q qb) V (qb NIL A q# NIL A q qa))

then if 3r 3ra, ((rb, ra) E AR

A rb 6 NIL -- V, I E A, Value(rb(I)) = Value(q(I))

A r, 0 NIL - VI, I eC A, Value(r.(I)) = Value(q(I)))

then (rb, r.)

else if 3r, r E R A VI, I E A, Value(r(l)) = Value(q(l))

then (r, r)

else (NIL. NIL)

else (NIL.-NIL)

EXAMPLE. Let Hb and AH be as defined in the example on page 145.

VECounterpart((NIL, (("Norman", {8,9}), ("Math", {8,9})) ), 116, An) =

((("Norman", {5,6)), ("Math", {5,6))) , NIL)

VECounterpart(( (("Norman", (8,9}), ("English", {8,9))), NIL), Hb, Al) =

((("Norman", {1,2)), ("English", {1,2})), (("Norman", {(12}), ("English", (1,2))))

VECounterpart(( (("Norman", (8,9)), ("History", {8,9))), NIL), Hb, A&) = (NIL, NIL)

The first tuple ((("Norman". {8,,9}), ("Math", {8,9}))) has a value-equivalent counter-
part in AR, the second tuple has a value-equivalent counterpart in Hb but not in A., and
the third tuple has a value-equivalent counterpart in neither H6 nor All. a

Unchanged determines whether an update operation, as defined by a historical differ-
ential, leaves a specified tuple in a historical state unchanged.

Unchanged:

[7RZSTVrZZCA4 2PCe x H71137ZZ7CAL C VzJ'YeR.A7TAIAC]

(TRUE, FALSE)

Unchanged(r, AR)

Vr&Vr., (rb, r.) E AR A rb 0 NIL 31, I E A A Value(r(I)) # Vclue(rb(I))

1 ~ ~~ IM' M RE 1 I' l •" •i' 1 1II1I •q
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EXAMPLE. Again. let Hb and IaH be as defined In the example on page 145.

Unchanged( (("Phil", {l, 3,4}), ("Eaiglish", (1, 3,4))), A•) = FALSE

Unchanged( (("Norman", {1,2}), ("English". {1,2})), AR) TRUE

The first tuple is changed by A41, but the second tuple is left unchanged. 0

Given these two auxiliary functions, we can now define an incremental version of each
historical npeirator. If we let F be a boolean function as defined in Section 3.3.4, then
incremental historical selection is defined as

{ (rb, r.) I (rb, r.) E AR A rb $ NIL - F(rb) A r,, i NIL - F(r.)})

Note that the output d;fferential of incremental historical selection. like that of incremental
snapshot selection, deptnds only on the input differential and the selection predicate.

Now, leZ V,, 4 • a : m, be a temporal function and G be a boolean function as
defined in Section 3.3.3.

6,, {(Iv),).....lmV ),(R, AR) • (60, {(w,-,v ) ....(.,,V,,,))

{(ub, u.) 3 T6J3-r, ((ri., r.) E AR

S(rb = NIL V 6 G, ((I,Vd),...(Im,(), ({Q b)) 0) - b " NIL

A (rb ji NIL A 6G, ((11.,VI,)...,(.. (v.')} (f rb}) 0 0) -

ub E 6G, {(I,,v,),.... (,m.,,)}({r&})

A(r. - NIL V JG, f(I1,V ) (... , V(,,)} ({r.)) = 0) U = NIL
A (r. NIL A 60, ((!,,,vs,..... (1,,,v,I,)} ({rb}) 6 0) -

u. E 6G,•(), ,v,)..... (I.,v)V({})

The output differential of inczemnental historical derivation, like that of incremental his-
torical selection, does not depend on the input state R. It depends only on the input
differential, the to.mporal functions V., 1 < a < m, and the boolean function G. Note that
the incremental version of the operator is defined in terms of the non-incremental version
of the operator, applied to a subset (here a single tuple) o" the original relation state. This
approach will be followed in deuining the other icrement-al oferators.

Assume that we are given a set of identifiers X of cardinality n, where X .C A4.
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{(u6, u.2) 3r3r., ((rb, r) e AR

A ((rb # NIL A r = rq) V (r6 = NIL A r =r))

AUb - Beforelrnage(R, X, r)

A U.a Afterlmage(R, AR, X, r)

A ub #.)})

where Beforelmage computes the projected image before update, and Afterimage computes

the projected image after update, of tuples in R that are value-equivalent to a tuple r for

attributes X.

Beforelmage:

[ iZSWr !CAC S ETA.7 x [ TMA"7Y7"21M ]* x N7STOM7VICAC WUC.6]

[XZS7 TCA-C7.4, fUr + {IN I]

Beforelmage(R, X, r) =

if 3u, E E *x({r' I r' e R A VJ, I E X, Value(r'(v)) = Value(r(t))})

then u

else NIL

Afterlmage :

[W.7MTO7XCAC STA7g x HIS eTRM CAC VIYMTPIX'flAL x

[. VTDC.V7T'2 1* x hIZSTOMZCA,- 1WCLC]

-[1ST. UC.A4I C.6PZ& + {NIL} I
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Afterlmage(R. AR, X., r) =

if 3 u E *x({r' I (3r 6 3r,, ( (rb, r,) E AR A r. A NIL A r' = r.

AVI, I E X, Value(r'(I)) = Valtu(r(I))))

V ( r' E R A Unchanged(r', AR)

AV1, I E X. V6/ue(r'(I)) = Value(r(I)))})

then u

else NIw

Note that i:-cremental historical projection. like incremental snapshot projection. must
account for the possibility that two or more tuples in R can have identical value components
for attributes X. Hence. the output differential of incremental historical projection. unlike
those of incremental historical selection and incremental historical derivation, depends on
the input state R, as well as the input differential AR.

(Q, Aq) ,)'(R, AR) - (QQR,

{(u 6, us)I (3qb3q., ((qb, q.) E A6

A(rb, r.) = VECounterpart((qb, q.), R, AR))

V 3rb 3r., ((rb, r.) E AR

A(qb, q.) = 1'ECounterpart((rb, r.), Q, AQ)))

A (ub, u,) = (J7Union(q%, rb), HUnion(q., r.)) A U6 $ u.))

where B'Union computes the hiptorical unioz, of either the before images or the after images
of value..equivalent tuples in Q and R.

HUnion :

([7 [Z76. MlICAC 71 ±Mf +{NL}] f N I.. x (lT.S7= 4: Z A46 + {f!L}]] --

--[ s _7mTc• c W2,Ct + {NIL}
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HUnion(ul, u2) =

if U 9 NIL

then if U2 NIL AVE v Ul}CJ{U2)

then v

else ul

else u2

(Q, AQ•) (R, AR) (Q CiR,

{(Ub, U.) I (3qb 3q., ((qb, q.) E -AQ

A(rb, r,) = VECounterpart((qb, q.), R, AR))

V 3 rb 3r, ((rb, r.) E AR

A (qb, q,,) = VECounterpart((rb, r.), Q, AQ)))

A (ub, u.) = (HDifference(qb, rb), HDifference(q., r.)) A ub # u.})

where HDifference computes the historical difference of either the before images or the
after images of value-equivalent tuples in Q and R.

HDifference :

[N[I7• MUCAC 2UPAE + {NIL} ] x [ 7-MtSfTOIcA4 P t + {NIL} ]] -

[7ISM,.lR!CAtz UPC.6 + {NIL)]

HDifference(ul, u2) =

if U j NIL

then if u1 $NIL, {u}- {u 2 }) A vEfu1 }- {u2 }

then v

else Nl,

else ul

Now let Q be a historical state of ml-tuples on the relation signature 4Q with at-
tributes AQ = { LQ,j, ... , q,mn }, R be a historical state of m2-tuples on the relation signa-
ture ZR with attributes ARt { IRj, ... , IR,m,2 }, and Aq and AR be historical differentials
for Q and R, respectively, Also assume that AQ f AR 0.
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{(ub, Ua) ! 3 qb3qa3rb 0r., ((qb, q,) E AQ A (rb, ra) E AR

A(ub, u.) = (HProduct(qb, rb), HProduet(q., ra))

A(ub, Us) i (NIL, NIL)))

U{(ub, u.) 3qb3q.3r, ((qb, q.) E Aq A rE R A Unchanged(r, AR)

A (ub, u.) = (HProduct(qb, r), HProduct(q., r)))

V 3q 3rb3r, (q E Q A (rb, r,) EAR A Unchanged(q, AQ)

A (Ub, u.) = (HProduct(q, rb), HProduct(q, r.)))})

where HProduct computes the historical cartesian product of either the before images or
the after images of value-equivalent tuples in Q and R.

HProduct :

[[ 7 VTZTcn At 2PC: + {NIL} ] x [ tZS Zc W..C PCft + {NIL} ]

[•716 7M0 CAZ WCPCE. + NIL} )

HPmduct(ul, u2) =

ih UI NNILAU20IL A vE {ul}lx{U 2 }

then v

else NIL

Incremental versions of both aggregate operators, A4' and AT', can be defined ii,
terms of 0' and V'. Let R be a historical state of m-tuples over the relation signature z
with attributes All = {11, ... , I.)} and Q be a historical state with attributes AQ, where
AQ g AR. Also, assume that we are given the scalar aggregate f, the windowing func.
tion w, identifiers I. and Ieg, and a set of identifiers B, with the restrictions that 1, G B,
B U (IQ) 9 AQ, and l4y9 0 Ac. Finally, let Aggtb be the set of tuples input to the pro-
jection operator in the definition of I in Section 3.4.2 an page 40 and Agggc. be the set
of tuples input to 'he projection operator in the definition of A if we were to replace all
references to Q with references Lo HUpdate( Q, AQ) and all references to R with references
to H.Update(R, At). Agg 6b depend. on Q and R, wheieas Agg,. depends on Q, Aq, R,
and A,.
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-if" wile,,.,B(Q, AQ, R. AR) 4
" !Uvt, tE(* u(,{ ) (Aggt b, H.Differential(Agg1,6, Aggc,.)))

Changes to Q have only an isolated affect on the differential for Aggt,b. A tupleinserted into, deleted from, or changed in Q may cause an element, representing a change
to a tuple in Aggt,b, to be included in the differential. A tuple changed in Q, however,
causes an element to be included in the differential only if it either satisfied the windowing
predicate, as defined by w and t, before the change to Q or satisfies the predicate after
the change to Q. A change to R, unlike a change to Q, can have a significant affect on
the differential, Whenever a tuple that satisfies the windowing predicate is inserted into,
deleted from, or changed in R, new aggregate values must be computed for all tuples in Q
that have the same value component as the changed tuple for attributes B. An element
will be included in the differential for each tuple in Q whose old and new aggregate values
differ. Hence, a change to a tuple in R can cause an arbitrary number of elements to be
included in the differential. A-U I can be defined analogously.

The remaining operators, 0a', , *', and 4-., all can be defined simply by substituting
&1, 61, *1, i', -_. and ý' for d, 0, *, Ci, ", and k, respectively, in the definitions of their
non-incremental counterparts.

6.5 Language Extensions

Having defined incremental versions of the snapshot and historical algebras, we now extend
the language defined in Chapter 4 to accommodate views. We present, in this section, the
cha.-ges to the language's syntax. semantics domains, and semantic functions T. E, and C
that are needed to support views.

6.5.1 Syntax

We need add only three new commands to the language's syntax to accommodate views.

C desfina.vice(l, E) I define.rocompueod..view(l, E)

I detfine.incremental viev(I, E)

The command d&fine.view creates an unniaterialized view and, as we will see in Sec-
tion 6.5.5, supports either query modification or in-line view evaluation. The commands
def ine.recomputed.view and deo in.- incremental.view create materialized views and
specify immediate-recomputed and immediate-incremental maintenance strategies, respec-
tively. As stated earlier, we postpone discussion of deferred view materializaticn until the
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next chapter. For all three commands I is the identifier that nantes the view and E is the
view definition.

6.5.2 Semantic Domains

We need change only one semantic domain to accommodate views. The semantic domain
71£244•'TOA (given on page 61) must be extended to contain a record oi (a) whether the
database state currently maps an identifier onto a base relation or a view; (b) if a view,
the view's definition awid whether the view is unmaterializcd or materialized, and, (c) if
materialized, its maintenance strategy.

1&CA7TWo = [ X7z(IzTZO CLASS x T ,KWSAC7IOK AZUM•MBXf x

['77%1. sAcfzoS C AuMBe'7 + {}]*x
[REZA 1O/ 6ZKGA(A WU x 'erM.AMSACTOM .fVUM 5C1 ] x

[(SAfAPS7-f T STA7E x TiZArSAC7W10A A'UMBETZ]1+

[ (.nMICAC STA 7 x 7RAMfSAC71A( A/UM B• ] *x

(t6XPR_6SSTOAK

{UNMATERIALZED, RECOMPUTED, INCaEMENTAL]] + (BASE)}

Note that a relation is now defined as a quadruple, where the fourth componert rucords
the needed view-related information. Note also, that a relation's class sequence can ncw
be empty. The relation's class sequence may be empty if the relation is an unmaterialized
view because the class of an unmaterialized view is not stored in the database; unly the
view's definition is stored in the database. A relation's class sequence, however, will be
empty only if the relation is an unmaterialized view with no history as either a rollback
or a temporal base relation. Also, the class sequence of a materialized view, like that of a
base relation, can't be empty because the class of a materialized view, like that of a base
relation, is stored in the database.

Because of this extension, all auxiliary functions in Appendix B, defined in terms of the
semantic domain IZtEA71cW, must bi extended to handle relations that are quadruples
raths.,- than triples. The required changes are minimal and do not change the purpose of
the fuactions.

6.5.3 Type System

The type system for expressions, which was defined in Section 4.2.3, requires only one minor
change to accommodate views. Because identifiers can now denote either a base relation
or a view, the definition of the semantic function T for identifiers (given on page 67) must
be extended to handle views as well as base relations.
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Till(d, tn) if d(V) = (Ul, U2 , U3, (E. UNMATERIALIZED))

then T[E](d, tn)

else if (Lawt Clas.(d(I)) = SNAPSHOT

V LastClasa(d(I)) = ROLLBACK.)

then (SNAPSHOT, LastSignature(d(I)))

elke if (Last lass(d(I)) = HISTORICAL

V LastClass(d(I)) = TEMPORAL)

then (HISTORICAL, LastSignature(d(I)))

else TYPEERROR

If an identifier denotes an unmaterialized view, T determines its type by computing the
type of its view definition, since the view's class and signature are not materialized. If,
however, the identifier denotes a materialized view, T determines its type just as it would
a base relation, since the view's class and signature are materialized.

6.5.4 Expressions

The semantic function E, like the semantic function T, requires one minor change to
accommodate views. Its definition for identifiers (given on page 73) must be extended to
handle views as well as base relations.

Ell] (d, in) = if (d(I) = (ul, U2, U3, (E, UNMATERIALIZED))

A T[Il (d, tn) 0 TYPEERROR)

then E[E](d, tn)

else if T[I1 (d, tn) 0 TYPEERROR

then LastState(d(l))

else ERROR

If an identifier denotes an unmaterialized view, E determines its state by evaluating its view
definition, since the view's state is not materialized, if., however, the identifier denotes a
materialized view, E determines its state just as it would a base relation, since the view's
state is materialized. Note that this change is needed to support in-line evaluation of
unmaterialized views. The change would not have been needed if we had required that
unmaterialized views be accessed only via query modification. Under query modification,
no expression containing a reference to an unmaterialized view is ever evaluated because
such expressions are converted to equivalent expressions involving only base relations before
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being evaluated.

EXAMPLE. Consider the expression

o'coursem"English" (OP)

given in the example on page 134. It we were to evaJuate the expression using in-line view
evalut,:ion, we would have to evaluate the view dcfi!1ition for the unmaterialized view SP.
If, however, we were to r.onv ert the expression to the equivalent exprsarian

otsnames"-hil"' 3ad courews,"English" (S)

using query modification and then evaluate this equivalent expresamon, we would only have
to access the base reladion S. 0

Also note that we do not have to extend the definition of E for the rollback operators
to account for the presence cf views because the definitons given on pages 69 and 71 are
sufficient to prevent rollback of a relation to a time when it was a view. A relation cai, only
be rolled back to a time when its class was either rollback or temporal. but a relation's class,
when that re)atiozw is a view, can only be e!ther snapshot or historical. This restriction is

appropriate because views are functions on the current database state.

We do, however, need to introduce a variant of E, which we refer to as El, to support
update of incrementally maintalned materialized views. When a database uipdate operation
makes changes to a base relation, those changes must be propagated to each materialized
view in the base relation's view dependency graph. We use EV in propagating changes
to a base relat ion through that relation's view dependency graph. E, determines, for an
incrementally maintained materialized view, the changes that must be made to the view
for it to be conristent with its underlying relations when one, or more, of those relations
changes.

EXAMPLE. Assume that the views SP. SM. and SU in the example on page 132 were defined
as materialized views maintained incrementally, rather than unmaterialized views (i.e., they
were defined using the define.incremental, view command rather than the detinne.view
command). Now consider an update to the base relation S. The changes to S that result
from the update must be propagated first to SP and SM and thun to SU. The changes that
must be made to SP and to SM depend only on the changes to S while the changes that
must be wiade to SU depend on the changes to both SP r.nd SM. To propagate the changes to
S through the view dependtucy graph shown in Figure 6.1, we use EV to determine, given
the changes that were made to S, the cI'anges that must be made to SP and SM. Then, we
update SP and SM to be consistent with S. Next. we use El to determine, given the changes
that were made to SP and to SM, the changes that must be made to SU. Finally, we update
SU to be consistent with SP and SM. in so doing, the changes to S are piopagated correctly
to SP, SM, and SU. 0



157

EP_,e: eAP $SSZOA" - [DAT.A$AS6 STAT x P4TAB.4Se STTATE x

77?4gSAC7zgA ." 8VCM ] --

([$APS7NYr SEAT.6 x WgAP-SHOT VTX.FCR-A(nAC J+
hLMICST"O7CAc ST"A7Cx

7a70RIS2V1CAIZ V27TFFCR&AMC I + (ERROR)J]

Unlike E, which maps a semantically correct expression onto a relation state, E, mips a
semantically cor,'ect expression onto a relation state and a differential. The relation state is
the state, just before a database update operation, of the named or unnamed relation that
the expression defines, a.nd the differential is the set of changes that must be made to the
relation state to produce the state of the same named or unnamed relation immediately
after the update operation. The environment for expression evaluation is the database
state just before the update, the database state immediately after the propagation of the
changes that result frorA the update to all relations that the expression references, and the
transaction number of the update.

EXAMPLE. Assume that d4 is the state of the database containing S and the incrementally
maintained materialized views SP, SM, and SU just before an update to S. Let d. be the state
of the database after the changes that result from the update of S have been propagated to
SP and SM. SU's differential for the update can then be determined by applying E, to SU's
view definition in the environment defined by db, d., and the transaction number for the
update (i.e., El[Ir(snamn)(SPUSJ)i (db, d., tn)). 03

We can define the semantic function EV for each expression in the language as follows.

E'[[snapshot, Z, S)J(d 6, d, tn) =

if TI[[snapshot, Z, S)1(db, ti.) 0 TYPEERROR

then (S(SIZIZI, 0)

else ERROR

El simply maps a snapshot constant onto the snapshot state that it denotes and the empty
snapshot differentiad. EV for a historical constant is defined analogously.
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V[(] (db, d,, in)=

if (T[I](db, in) = T[l] (d., in) = (SNAPSHOT, :))
then (E[JI(db, in), S..Differential(E[lj(db, in), E[II(d., in)))

else if (T[I] (db, tn) = T1I] (d,, in) = (HISTORICAL, z))

then (E(I]j(db, in), I.Differential(E[Il (d4, in), E[I] (d,, in)))

else ERROR

An identifier evaluates to the state of the relation that it denotes just before the update
and the relation's differential, if any, for the update. Note that the relation must have the
same type, as deflued by its class and signature, in db and d.. Type-checking is performed
because incremental expression evaluation does not allow changes to the type of any relation
referenced in an expression: otherwise, a differential could not be computed.

EVp(I. N)I(db, d., in) = if T[p(l, N)jI(dh, in) 0 TYPEERROR

then (FindStaie(db(I), N[N]), 0)

else ERROR

Because updates can't changes past states of relations, EV simply maps an expression involv-
ing a snapshot rollback operator onto the state of the relation denoted by I at transaction
N and the empty snapshot differential. El for historical rollback is defined analogously.

EI[ElUE 2](db, d., in) =

if (T[EiUE2•(db, in) = T[E1UE 2J(d., in) # TYPEERROR)

then E[El](d4, d, tn) u' E'[E 2j(db, d, tn)

else ERROR

The definition of El for snapshot union is formed from the definition of E for snapshot
union simply by substituting El and its environment for E and its environment and by
substituting incremental snapshot union for non-incremental snapshot union. Again, the
type of the expression must be the same in both database states. All other snapshot and
historical operators are defined analogously.

6.5.5 Commands

We now show the changes to the semantic function C that are needed to accommodate
views. We first define C for the three new commands and then extend the definitions of C
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for the commands introduced in Section 4.2.5 to take into account the presence of views in
the database. Before doing so. however, we describe informally several functions used in
the definitions. Formal definitions for these functions appear in Appendix B.

R is a semantic function that maps an expression onto the set of identifiers that occur in
the expression.

BaseRelation is a boolean function that determines whether an identifier denotes a defined
base relation in a database state.

MaintenanceStrategy maps an identifier that denotes a view in a database state onto the
maintenance strategy (i.e., unmaterialized, recomputed, or incremental) for the view.
If the identifier does not denote a view, AfaintenanceStmtegy returns ERROR.

UpdateState maps a relation state, differential, and relation class onto the relation state
that the input relation state and differential denote. If the class is other than snapshot
or historical, UpdateState returns ERROR.

View is a boolean function that determines whether an identifier denotes a view, either
unmaterialized or materialized, in a database state.

ViewDef maps an identifier that denotes a view in a database state onto the expression
that defines the view. If the identifier does not denote a view, ViewDef returns ERROR.

Views maps an identifier onto the set of identifiers denoting views that depend, either
directly or indirectly, on the relation denoted by the identifier in a database state.

Given these auxiliary functions, we can now define the semantic function C for the
new commands.

C[define.view(l. E)j(d, tn) =

if (M = M~oT(d(1), in) A LaatClaa(d(I)) = UNDEFINED

ATIE](d, tn) 0 ERROR)

then (d[(A!, (E, UNMATERIALIZED))/I], OK)

else (d, ERROR)

The command def ine*view makes a relation, whose current class is UNDEFINED, an unma-
terialized view effective when the transaction in which the command occurs is committed.
The command simply replaces the relation's first three components with the relation's
MSoT and sets the relation's fourth component to the view definition E and the keyword
UNMATERIALIZED. Neither the view's class, signature, nor state is stored in the database.
When the view is accessed, its class, signature. and state will be determined by the se-
mantic functions T and E using E. Note that we only require the view definition to be
type-correct. Hence, unmaterialized views can be defined in terms of base relations, mate-
rialized views, and other unmaterialized views. Also note that type-checking is suffizient
to ensure that the view definition is acyclic. A reference to I in E, either direct or indirect,
would produce a type error, thereby aborting the view definition. Finally, storing the view
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definition in the database is sufficient to support both query modification and In-line view

evaluation. We provide the information needed for query modification (i.e., whether an

identifier denotes an unmaterialized view, and if so, its definition) but assume that the

actions of query modification are part of the DBMS's user interface, and therefore outside

the algebra.

C(def mne_. ecompu:ed.vview(I. E)j(d, tn) -

if (M = MkoT(d(l), tn) A LastClass(d(I)) = UNDEFINED

A T[E](d, in) = (y, z))

then (d[(M 113 (((, tn, -)), NewSignature(M, (z, in)),

NewState(M, (E[EJJ(d, in), in), (y, z))),

(E, RECOMPUTED))/I], OK)

else (d, ERROR)

The command detine.recomputed.view makes a relation, whose current class is iJNDE-

FINED, a materialized view effective when the transaction in which the command occurs

is committed. The command also specifies that the view is to be maintained using the

immediate-recomputed strategy. Unlike deft in.viov, def e.r4 .recomputed.vieV appends

elements to the relation's class, signature, and state sequences, if necessary, to record the

view's current class, signature, and state values. Hence, for retrieval, the view can be

treated the same as a base relation. Materialized views, like unmaterialized views, can
be defined In terms of base relations, unmaterialized views, and other materialized views,

although practical considerations makes definition of a materiajized view in terms of an

unmaterialized view improbable. Note that a materialized view's class, as well as that of

an unmaterialized view, is either snapshot or historical. A view's class can't be rollback

or temporal, as views are functions on the current database state. A relation currently

defined as a view, however, can have a (transaction-time) history, as a rollback or temporal

base relation, accessible via rollback.

C[def .t.n:-ncrment al.-view(I. E)J (d, in) =

if (M = MSoT(d(l), in) A LastClau(d(l)) = UNDEFINED

A T[E](d, in) = (y, z))

then (d[(M 113 (((Y, in, -)), N'ewSignature(Af, (z, in)),

NewStaie(Af, (E(Ej(d, tn), in), (y, z))),

(E, INCREMENTAL))/IJ, OK)

else (d, ERROR)

The command define.incrmental.view is identical to dot ins.recomputed.viow, with
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one exception: the view is to be maintained using the immediate-incremental strategy
rather than the immediate-recomputed strategy. Note. however, that computation of the
view's initial state value is non-incremental.

We now cau redefine the four commands. originally defined in Section 4.2.5, to ac-
commodate views.

C[define..relation(I'. Y, Z)](d, tn)

if (M = ffi H T(d(I), tn) A LastClass(d(I)) = UNDEFINED

A Y[Yj 36 ERROR A ZI[Z j # ERROR)

then if FindClas/ ((M, BASE), tn - 1) = YIY]J

then (d ((Ezpand(JM ) 113 ((), New.giguature(M , (Z[ZJ, tn)),

ArewS~ae(M, (0, in), (Y1YD, ZfZj))),

BASE)/l], OK)

else (d[(Aff13(((Y[Y], tn, -)), NewSigeature(M, (Z[Z], tn)),

NewState(M, (0, in), (Y[YJ, ZIZ]))),

BASE)/I], OK)

else (d, ERROR)

Only minor changes are needed to the define..rslation command (c.f., page 80) to ac-
commodate views. The keyword BASE is added as the fourth component of the relation to
record that a base relation is being defined. Also the relation's MSoT is augmented with
this same keyword before being passed as an argumeut to the function FindClau.

The modify.-relation command (c.f., page 83), however, requires more extensive
changes because each change to a base relation now must be propagated to every materi-
alized view in the relation's view dependency graph.

EXAMPLE. Assume that the views SP, SM. and SU in the example on page 132 were defined
as incrementally maintained materialized views. Then, if S were updated to include the
tuple ("Marilyn", "Math"), SM would have to be updated to include the same tuple, and
SU would have to be updated to include the tuple (",Marilyn").
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C[0odity.-relation(I. Y', J", E)J (4, tn) -

if (M = AfSoT(d(I), tn) A TJED (,d, tn) # ERROR A BaseRelation(I, d)

A Consitent(Y'[ Y1 (d(1)), 2¶1Z'] (d'(I)', T[Ej (d, in))

A d. = Update l!ewas(d, d[(M 113 (07'01Y1j(d(l)), tn, ,)), ((Z'[Z'jid(I)), in)),

((-[,El (d, tn), tn))), BASZ)/I]), tn, Views(l, d)))

then if FindClasa((M, HASE), tn - 1) = Y[Y'lj(d(l))

then (4d [ (Ezpand(AM) 113 ( ), NewSignature(M, (Z'[Z'] (d(I)), tnt),
NewSiate(Afl, (E[E] (d, an), in), TIE] (d, an))),

BASE)/II, o0)

else (d. [(01 I1 (((Y'[ ] (d(I')), in, -)), NewSignature(M, (Z'[Z'j (d(1)), t A)),

Newg-tate(.M,, (E[EJ (d, in), in), T(E] "d, in),

BASE)/I], OK)

else (d, ERROR)

We added two predicates, denoted by the functions BaseRelation and Update Views, to the
definition of modif y.relation to accommodate views. The predicate BaseRelation ensures
that the relation being changed is a base relation and type-checking of view definitions
within Update Views ensures that all views that depend, either directly or indirectly, on the
relation are consistent with the relation's class and signature after the change. Otherwise.
the change is not allowed. If all view definitions are consistent with the base relation's type
after the change, materialized views that depend on the relation are updated to reflect
the change. Update View. alsa performs this task. As with define.s-elation, we add
the keyword BASE, where appropriate, to record that tne relation being changed is a base
relation.

Update Views takes four arguments: (a) the database state just before a base relation
is updated, (b) the database s~tate immediately after the relation has been updated and the
changes to the relation have been propagated to zero or more of the views in the relation's
view dependency graph, (c) the transaction number for the update, and (d) the set of views
from the relation's view dependency graph that have yet to be updated. Update Views
updates materialized views in the set to account for changes to their underlying relations
that result from the update of the base relation and verifies that the view definitions of
unmateriaUzed views are consistent with the class and signature of each of their underlying
relations. If the definition of a&ay view, either unmaterialized or materialized, is inconsistent
with the class or signature of one of its underlying relations, Update Views returns ERROR.
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Update View•:

[DATAB.ASE STA2" x DA.TA B4SC S7AT," x 764,,SAC,"ZOi" /MM• ,6d x

P (I•EAi7,.•4.) V-- DA7T.,4A•SS2"7; + {ERRO} ]

Update Views(db, d., tn, v) =

if v10

then if 31, (I E v A E- ViewDef(l, d,) A v ^ R.[EJ--

A M = AMoT(d.(I), in) A T[Ej(d., In)= (y, z)

A McintenanceStrategy(I, d.) = UNMATERIALIZED -o d' = d4

A (MaintenanceStrategy(i, d.) = RECOMPUTrD

V (MaintenanceStrategy(I, d.) = INCREMENTAL

A 31', (1' e R[E] A T[I](T4, tin) 6 T[J'j(d., tin)))) -

d, = d. [(M 113 (((u, tn, -)), NewSignature(M, (z, tn)),

NewSiaie(kf, (E[EJ (d,, In), in), (y, z))),

(E, MaintenanceStrategy(l, d. )))/I]

A (MaintenanceStm tegy(l, d.) = INCREMENTAL

A VI', I' E R[E, T['] (d4, in) = T[I'] (d,, tn)) --

d' = da ((M 113 (((Y, tin, -)), NewSignature(M, (z, tn)),

NewState(M, (UpdateState(EIE (4, d4, in), y), in), (y, z))),

(E, INCR.EMENTAL))/Ij)

then Update Views(db, d', In, v - {I})

else ERROR

else d,

Update Views selects from v a view that depends on no other view in v (i.e., vnRJElJ = 0). It

then type-checks the view's definition, whether the view is unmaterialized or materialized.
This action alone is sufficient to determine whether the view's definition is consistent with

the type of each of its underlying relations. No further action is taken if the view is
unmaterialized. If the view is materialized, however, it is updatod to reflect any changes to
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its underlying relations that resulted from the update of the base relation. If the immediate-
recomputed strategy is specified or the immediate-incremental strategy is specified, but the
type of at least one of the view's underlying relations has changed, the new state of the
view is computed using E. Only if the immediate-recomputed strategy is specified and the
type of none of the view's underlying relations has changed, which is. likely to be the most
common situation, is the new state of the view computed using EV. After type-checking
the view's definition and updating the view, if materialized, Update Views removes the view
"rrom v and calls itself recursively to update the remaining views.

EXAMPLE. Suppose a modify.comuand updates base relation S in the example on page 132.
Assuming SP, SN, and SU are incrementally maintained materialized views, Update Views
would be executed, following the update of S, for the set {SP, SN, SU). Update Views would
select either SP or SN for update. as neither is defined in terms of other views in the set.
Say, for the sake of discussion, that SH is selected. Update Views would update SM and then
call itself recursively for the set {SP, SU}. During its second execution, Update Views would
select SP for update and, after updating SP, call itself recursively once more for the set
{$S). During its third execution, Update Views would update SU and return the database
state resulting from the propagation of the changes to S to SP, SN, and SU. Note that the
order in which the views are selected for update corresponds to a topological sort (i.e.,
an ordering of the nodes in a directed acyclic graph such that for all edges (u, v), node u
comes before node v in the ordering) of the view dependency graph for the base relation
S. 0

C[destroy(1)] (d, tn) =

if (M = MSoT(d(I), tn) A (BaseRelation(I, d) V View(I, d))

A Views(I, d) = 0)

then (d[(M 113 (((UNDEFINED, tn,-)), (), ()), BAsE)/I], ox)

else (d, ERRof)

The destroy command (c.f., page 86) is extended to delete either a base relation or a view.
Also, one new condition must hold. For a relation, whether it be a base relation or a view,
to be deleted, there must be no views that depend on the relation. Otherwise, the deletion
is not allowed.

......
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C([ename..rel.tion(11 . 12 )4 (d, tn) =

if (BaaeRelation(Ii, d) A LaatClass(d(12)) = UNDEFINED

A Y[ Y] = La.tClaas(d(Ii)) A Z[ZJ = LastSignature(d(rA))

A C[deine..relation(12, Y, Z)j(d. in) = (d', OK)

A C[modif y.relation(I 2 , *, *, I,)](d', in) = (d", OK)

A Cldestroy(Il)! (d", tn) = (d"', OK))

then (d"', oK)

else if (View(Ii, d) A LastClass(d(12)) = UNDEFINED A ViewDef(I,, d) = E

A ( (ViewStrategy(1t, d) = UNMATERIALIZED

A C[def ine.view(1 2 , E)j (d, tn) = (d', oK))

V( ViewStrategy(II, d) = RECOMPUTED

A C[def ine.recomputed.view(1 2. E)j (d, in) = (d', OK))

V ( ViewStrategy(Ij, d) = INCREMENTAL

A C[defin.*-incremenftal.-view(12, E)j (d, in) = (d', oK)))

A C~dentroy(II)] (d', in) -= (d", OK))

then (d", OK)

else (d, ERROR)

The renaae.relat ion command (c.f., page 87) is extended to rename views as well as
base relations. Because a relation can't be deleted if there are views that depend on it, a

relation, likewise, can't be renamed if there are views that depend on it.

6.6 Scheme Evolution in the Presence of Views

The presence of views restricts the changes that are allowed to the scheme of base relations.

In Chapter 4 the modif y.relat ion command allowed arbitrary changes to a base relation's

class, signature, and state as long as the relation's class, signature, and state remained

consistent (i.e., the type of the relation, as defined by its class and signature, was the same

as the type of the expression that denoted the relation's state). The presence of views

places no additional restrictions on changes to a base relation's state. All changes to a base

relation's state that are corsistent with the relation's class and signature are still allowed.

The presence of views, however, restricts the changes that are allowed to a base relation's

clasr and signature.

Clau changes between snapshot and rollback and between historical and temporal
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are always allowed because these changes in a relajion's class do not result in a chane in
the relation's type. Class changes between snapshot or rollback and historical or temporil,
however, are allowed only if the view definition of no view that depends on the relation
contains a snapshot or rollback operator. If there is one view that depends, either directly
or indirectly, on the base relation and that view's definition contains either a snapshot or
historical operator, these class changes are not allowed as they would cause a type error
for the view definition.

Changes to a base relation's signature (i.e., inserting an attribute, deleting an at.
tribute, changing an attribute's value domain, and renaming an attribute) are allowed if
the changes do not cause a type error for the view definition of any view that depends on
the base relation. Changes to a base relation's signature, when they are allowed, however,
cause incrementally maintained views that are defined in terms of the base relation to be
updated non-incrementally.

EXAMPLE. Consider the base relation S and the views SP, SM, and SIJ from the example
on page 132. Addition of a new attribute to S's signature or deletion of the attribute
cours, from S's signature would cause a change to SP's and SM's type but would not cause
a type error. Hence, these changes to S's signature would be allowed. But, if the views
were being incrementally materialized, their new states would be recomputed rather than
incrementally updated for these changes. Deletion of the attribute snare, from S's signature,
however, would cause a type error in the view definition of all three views. Hence, this
change would not be allowed. 0

The requiremelt that views be consistent with their underlying relations after the
execution of each command rather than after the execution of each transaction, disallows
multiple-command transactions that would leave the database in a coniistent state after the
execution of the transaction but not after the execution of each command in the transaction.

EXAMPLE. Suppose SP and SM were base relations. Consider a two-command transaction
whose first command adds a new attribute to SP and whose second command adds the same

attribute to SM. Although SU would be type-correct after the execution of both commands,
it would not be type-correct after the execution of the first command. because SP and SM
would not be union-compatible. Hence, this transaction would be aborted. ri

Type-checking of view definitions within VletoUpdate is sufficient to ensure that the
restrictions on scheme evolution are enforced for all base relations upon wnich views depend.
Also, none of the restrictions are applied to a base relation if there are no views defined in
terms of that base relation.

6.7 Summary

In this chapter we have extended the language defined in Chapter 4 to Accommodate
views. Support for views required changes in the language's syntax and semantics. Three
new commands, which define views and specify view maintenance strategies, weýre added
to the language's syntax. Elements of the semantic domain RT6tCA7""AO were redetined to
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include view-rclated information and the semantics functions T and E were extended to
handle views. The semantic function C was defined for the new commands a"d redefined
for existing commands to account for the presence of views. Also, incremental versions
of the snapshot and historical algebras were defined to support incrementally materialized
views and a new semantic function EV was introduced to handle Incremental expression
evaluation. The incremental snapshot algebra is simply a restatement of the algorithms for
incremental update presented elsewhere [Blakeley et al. 1986A, Hanson 1987A, Horwitz &
Teitelbaum 1986). The incremental historical algebra. however, is new. As far as we know,
this is the first effort to define an incremental version oi a historical alge)" 4. In applying
the concepts of incremental expression evaluation to our historica!l agebr,, vwe found that
our algebra is as amenable as the snapshot algebra to incremental expressio- !,,duation.

The contribution of this work is support for views, ant'1 - .iigc of vie, rr,,.4ntenance
strategies, in the context of general support for temporal databases. Bot' Loonlaterialized
and materialized views are supported, as are the view maintenance strategie' ,i query mod-
ification, in-line view evaluation, immediate-recomputed materialization, and imnmediatc-
incremental materialization. This support for views is achieved without loss of language
capability or expressiveness and with only minor changes to the language's syntax and
semantics. Although the language still supports arbitrary changes to both the scheme (i.e.,
class and signature) and state of base relations, the presence of views does restrict the
changes to a base relation's scheme that are allowed, but only if there are views that are
defined in terms of that base relation.

In the next chapter we discuss an architecture appropriate for the incremental main-
tenance of views in temporal databases.



Chapter 7

Incremental View Materialization

In the previous chapter we added support for views to our language for query and update
of temporal databases. We now describe an architecture for query processing in TDBMS's
that accommodates incremental maintenance of materialized historical views. This archi-
tecture is an adaptation of an existing architecture for query processing in conventional
RDBMS's that accommodates incremental maintenance of snapshot views.

7.1 Background

A view definition is simply the algebraic, pression that defines the scheme and state of a
view. Hence, the problem of materializing a view redku),'.s to: that *'f ,ýavluating an algebraic
expression. In the traditional paradigm for expression evaluation, an expression's parse
tree is generated and then reduced to a relation state by recursively replacing a subtree
rooted at, an interior node, whose children are all relation states, with the relation state
denoted by the subtree [Maier 19831.

EXAMPLE. Let Si denote a snapshot relation whose current signature specifies the at-
tributes {snam,, course} and S2 denote a snapshot relation whose current signature spec-
ifies the attributes {Inams, state}. Now consiker the view S3 defined by the following
def ine-view command.

define.view(S3, r(Snahne, state) (tsname=hname (SIXS2)))

S3's parse tree and the steps in its reduction during expression evaluation are shown in
Figure T.1. TI and T2 are the intermediate resuits of the evaluation. Also, circles denote
relation states while rectangles denote operator nodes. 0

While this paradigm is adequate for implementing recomputed view materialization, it is
inadequate for implementing incremental view materialization. The paradigm cannot be
used to identify, without recomputing a view itself, the t.ples that must be inserted into,



169

a T2

X T1

(Si S2

Figure 7.1: Parse Tree for View S3

or the tuples that must be deleted from, the view's old state for the view's new state to be
consistent with the new states of Its underlying relations following their update.

Snodgrass, Horwitz, and Rloussopoulos all have studied the problem of implementing
incremental view materialization as a view maintenance strategy fHorwitz 1985, Horwitz &
Teitelbaum 1986, Roussopoulo3 & Kang 1986A, Roussopoulos & Kang 1986B, Roussopou-
los 1987, Snodgrass 1982]. In so doing, they independently have proposed variations of a
paradigm for incremental expression evaluation. This paradigm uses an expression's parse
tree as the basis for building a processing network appropriate for incremental expression
evaluation.

Snodgrass and Horwitz both propose that a view f'• ' tio k; wuapped onto an acyclic
graph of processing nodes, which Snodgrass refers to as the vA 'w's update nasork. (We also
follow this convention hereafter). The update network has the form of a parse tree, where
each node performs the function of an incremental snapshot operator and differentials are
passed between nodes via edges. Differentials for the view's underlying relations, when
input to the network, cause the corresponding differential for the view to be output from

the network.

EXAMPLE. Let S3 be the view from the previous example, declared using the define.sin-
crementa.i.vew command rather than the define-.v4ev command. Its update network is
shown in Figure 7.2. We have elected to show the network as an inverted parse tree with
directed edges to emphasize the flow of differentials through the network. Not, -hat nodes
are now labeled with incremental snapshot operators rather than their non-i,,tcremental
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Figure 7.2: Update Network for View S3 As Formalized by Horwitz and Snodgrass

counterparts. Note also that each node can be thought of as computing a relation state
incrementally. If we were to apply the differentials output by :he cartesian product node
to an initially empty relation state, we would materialize the relation state denoted by
S1XS2, which would correspond to the relation state T1 in Figure 7.1. Likewise, if we
were to apply all the differentials ever output by the projection node to an initially empty
relation state, we would materialize the view itself. a

This paradigm for incremental expression evaluation differs fundamentally from that
for non.-incremental expression evaluation. First, the update network, unlike the parse
tree, is persistent. It is built when a view is defined, activated each time one of the view's
underlying relations is changed, and destroyed only when thf view itself is deleted from
the database. Second, operator nodes may have their own lof al memory and procedures.
For example, intermediate results from one activation of tht network may be cached in
operator nodes for use in the next activation of the network. v'Wacheing intermediate results
at operator nodes between activations of the network is one way to implement all the incre-
mental operators defined in the previous chapter, while pas ing only differentials between
nodes. (Note that "cacheing" here refers to the storage of irtermediate results in a node's
local memory, whether that memory is a volatile cache or a t-table store.) Third, the input
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Figure 7.3: Update Network for View S3 As Formalized by Roussopoulos

to, and the output from, the update network is defined in terms of differentials rather than
relation states.

Roussopoulos' formalization of the paradigm for incremental expression evaluation
differs only slightly from those proposed by Snodgrass and Horwitz. In Roussopoulos'
formalization, nodes denote either base relations or views (all intermediate results are
treated as views) and edges denote incremental operators. Figure 7.3 shows the update
network for 33 as formalized by Roussopoulos.

In addition to proposing a paradigm for incremental expression evaluation, Snodgrass,
Horwitz, and Roussopoulos have studied problems that arise when the paradigm is used to
implement incremental view materialization. Also, each describes techniques that can be
used to improve the performance of update networks in various processing environments.

Snodgrass has studied Incremental maintenance of materialized views in the context
of monitoring [Snodgrass 1982]. When a computational process is monitored, data are
generated by sensors, collected by a resident monitor, and passed to a remote monitor where
they eventually jecome inputs to used-defined queries. Snodgrass argues that monitoring
data should be processed as they are collected rether than at the end of a monitoring
period, so that data collection and query evaluation can be done in parallel and query
results can be presented to the user in (somewhat delayed) real-time [Snodgrass 1987]. To
support this capability, he advocates that queries against monitoring data be treated as
incrementally maintained materialized views.

Snodgrass shows how to map a TQuel query, when implemented as a view, onto an



172

update network and describes 12 types of operator nodes useful in processing monitoring
data incrementally. Included are operator nodes that perform selection, projection, carte-
sian product, and join operations incrementally. Because TQuel conceptually embeds a
relation's contents in a snapshot relation state (c.f., Chapter 5), only nodes that imple-
ment incremental snapshot operators are considered. Snodgrass also discusses techniques
that can be used to improve the space and time efficiency of update networks; some are
specific to monitoring while others apply equally to other processing environments. These
latter techniques include the use of query optimization techniques in building efficient up-
date networks, design of appropriate data structures for each type of node that requires
local storage of intermediate results, propagation of differentials using depth-first search,
and compilation of update networks.

Horwitz has studied incremental maintenance of materialized views in the context of
language-based editing environments (Horwitz 1985, Horwitz & Teitelbaum 1986]. Language-
based editing environments are used to detect and prevent programming errors during
program entry. Horwitz describes a language-independent model of editing environments
based on attribute grammars and the relational data model. In her model, programs are
attributed abstract-syntax trees while relations record information needed for the detection
and prevention of errors (e.g., static-semantic checking, anomaly detection, and program
interrogation), information normally scattered throughout the program tree. Because the
relations recording these aggregate data may need to be updated after every editing oper-
ation, Horwitz advocates that the relations be implemented as incrementally maintained
materialized views.

Horwitz formally defines incremental versions of eight snapshot operators: union,
difference, intersection, is-in, equi-join, cartesian product, selection, and projection. She
also proposes a technique for implementing all these incremental operators, except carte-
sian product, as nodes in an update network without having to pass relation states be-
tween nodes or having to cache intermediate results at the nodes between activations of
the network. To support this implementation strategy, she defines three procedures for
each incremental operator: membership-teat, which determines whether a tuple is in the
operator's output relation state; selective-retrieval, which returns the tuples in the opera-
tor's output relation state that match values specified for some subset of attributes; and
relation-producing, which builds the operator's output relation state. These procedures
can be used by operator nodes to answer tuple membership questions and perform selec-
tive tuple retrievals on their input relation states without having to access the relation
states themselves. To answer membership questions or perform selective tuple retrievals
on an input relation state, a node simply calls the membership-test or selective-retrieval
procedure for the operator node that computes differentials for the input relation state in
question.

The primary advantage of this strategy for implementing incremental view material-
ization Is that it avoids cacheing of intermediate results at most operator nodes between
network activations. The approach may provide both time and space savings over cacheing
of intermediate results, as most nodes in the network would be memoryless. Hence, it
is suited to systems, such as in-core database systems (Lehman & Carey 1986], in which
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processing time and temporary storage are concerns [Horwitz 1985]. The approach, how-
ever, has three disadvantages. First, a call to a procedure at one level of the network
causes recursive calls to procedures at each preceding level in the network until a node
whose input relation state is cached or a base relation is encountered. Second, cartesian
product nodes are still required to cache their input relation states between activations of
the network. Third, projection nodes have to call membership-test procedures with wild-
card values. The presence of wild-card values as arguments affects the cost of calling the
membership-test of several operators, including selection. Horwitz compares the cost of
using membership-test and selective-retrieve procedures to the cost of cacheing interme-
diate results. She concludes that at least the input relation states for cartesian product
and projection nodes should be cached to implement incremental view materialization at
a reasonable cost.

Roussopoulos has studied incrementid maintenance of materialized views in ADMS±,
an extended centralized architecture for databases which integrates a mainframe database
system, called ADMS+, and a workstation database system, called ADMS- [Roussopoulos
& Kang 1986A, Roussopoulos & Kang 1986B, Roussopoulos 1987]. ADMS± is not a dis-
tributed DBMS, but rather a centralized DBMS in which a tailored subset of the database
is downloaded to each workstation for local processing. Hence, ADMS± provides a cen-
tralized database environment, but distributes data and processing to workstations. Base
relations and views, once downloaded to a workstation, are maintained using a deferred-
incremental update strategy. Changes to base relations and views on the mainframe are
recorded in relation backlogs but are not broadcast to workstations. Only when a user
at a workstation attempts to access the outdated local copy of a downloaded relation is a
differential for that relation transmitted to the workstation and the relation updated.

Views in ADMS- are implemented as update networks. Update networks, and por-
tions of update networks, that are common to many workstations reside on the mainframe,
while update networks, and portions of update networks, that are common to only a few
workstations reside on their workstations. Unlike Horwitz, Roussopoulos advocates that
the output relation state of each incremental operator in an update network be cached be-
tween activations of the network. Indexing, however, is used to reduce the cost of storing
and maintaining the cache [Roussopoulos 1982B, Roussopoulos 1987]. While base relations
are materialized, views and intermediate relation states are maintained as indexes. The
output relation for an operator, other than cartesian product or join, is stored as a vector,
where each element is the address of a tuple in one of the operator's input relation states
that contributes to a tuple in its output relation state. The output relation for a cartesian
product or join operator is stored as a two-dimensional matrix of address pairs, where the
elements of each pair re addresses of tuples in the operator's input relation states that
contribute to a tuple in its output relation state. Because an update network is a directed
acyclic graph rooted at base relations, addresses always point, either directly or indirectly,
to tuples in base relations, the level of indirection determined by the depth of the operator
in the update network. Although this strategy is space efficient, retrieval of a tuple in a
view or an intermediate relation state requires that tuples in base relations be fetched via
one or more levels of indirection and then mapped onto the desired tuple, using the oper-
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ators that appear on the path leading from the base relations to the view or intermediate
relation state.

7.2 Approach

Our goal in this chapter is to show that the paradigm for incremental expression evaluation
independently proposed by Snodgrass, Horwitz, and Roussopoulos can be used, along with
the incremental snapshot and historical algebras defined in the previous chapter, to impis-
mert incremental view materialization in TDBMS's. The adequacy of the paradigm aud
incremental snapshot algebra for incrementally maintaining materialized snapshot views
has already been shown [Horwitz 1985, Roussopoulos 1987, Snodgrass 1982]. To show the
adequacy of the paradigm and historical algebra for incrementelly maintaining material-
ized historical views, we built a prototype query processor for TQuel. In this prototype,
an update network, defined in terms of incremental historical operators, is used to update
materialized views incrementally following changes to their uxiderlying relations. Construc-
tion of the prototype is proof that the incremental historical algebra defined in the previous
chapter is sufficient to support the incremental evaluation of standard TQuel qaeri-s. To
be useful, update networks, in addition to being correct, must also be efficient [Snodgrass
1982]. Henc.e, we will discuss implementation issues that arise when update networks con-
taln nodes that implement incremental historical operators. We describe several techniques
that can be used to improve the performance of such networks. In so doing, we examine the
applicability of existing optimization techniques, which can be used to improve the perfor-
mance of update networks containing incremental snapshot operators. to update networks
containing incremental historical operators.

We emphasize implementation issues becaume of the potential importance of this
view maintenance strategy to query processing in TDBMS's, Queries in TDBMS's can
be grouped into three broad classes: snapshot queries, rollback queries, and non-rollback,
historical qaeries. Snapshot queries involve neither valid time nor transaction time; Ahn
has shown that this class of queries can be sipiported in TDBMS's without performance
penalty if appropriate storage structures are used [Ahn 1986A]. Rollbas;k queries, which
reference either rollback or temporal relations, are queries asked "as of" some time in the
past. Because the past states of rollback and temporal relations never change, both the
cost and result of processing a rollback query is constant over time. If a rollback query's
execution frequency is sufficiently high, it is cost-effective to evaluate the query once and
cache the result for future reference. OC.herwise, it is cost-effective to simply re-evaluate
the query each time it is asked.

Historical queries are queries on the current state of historical and temporal relations.
Because the size of the current state of historical and temporal relations is likely to increase
monotonically over time, the cost of evaluating a given historical query is alsD likely to
increase monotonically over time. Furthermore, as only the most recent historical data in
the current state of a historical or temporal relation is likely to change between accesses,
there is likely to be an increasing amount of redundant processing associated with each
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repeated evaluation of a historical query. As we discussed in the previous chapter, whether
re-evaluation of a recurring historical query each time it is asked is cost-effective depends
on application-specific factors such as the frequency of the query, update patterns, the cost
of each evaluation, and the cost of alternate query processing techniques. Yet, there wil be
a subclass of recurring historical queries in many applications for which query re-evaluation
each time a query is asked will have unac-ceptable cost. Also, the size of this subclass of
recurring historical queries will increase during the life of a temporal database. Queries in
this subclass, however, may be efficiently supported by implementing them as incrementally
maintained materialized views.

We also emphasize incremental view materialization because it has been proven to be
an appropriate strategy for query evaluation in several, diverse processing environments.
As the work of Snodgrass, Horwitz, and Roussopoulos has shown, incremental view mate-
rialization is an appropriate strategy for query evaluation when query response time is a
primary concern. Hence, TDBMS's need to support incremental view materialization to be
of practical use in those processing environments where query response time is important.

In the next section we describe an architecture for query processing that acroml-
modates incremental view materialization in TDBMS's. This architecture is based on
the paradigm for incremental expressioa evaluation proposed by Snodgrass, Horwitz, and
Roussopoulos. ",i 9n we describe our prototype query processor for TQuel, which uses an
update network, constructed using this architecture, to update materialized views incre-
mentally following changes to their underlying relations. We conclude the chapter with a
discussion of optimization techniques for update networks containing nodes that implement
incremental historical operators.

7.3 Architecture

In this section we describe an architecture for query processing that accommodates in-
cremental view materialization in TDBMS's. This architecture is an extension of the
conventional architecture for query processing shown in Figure 7.4. Here ovals represent
processing phases, rectangles represent data structures, and arcs indicate the access to data
structures required during each phase of query processing. In conventional query process-
ing, a query passes through four phases of processing [Aho et al. 1986, Date 1986D]. The
syntactic analyzer builds a parse tree for the query, which Is then checked for correctness
against the system. catalog by the semantic analyzer. The parse tree, if semantically cor-
rect, is then passed to the code generator where it is optimized and mapped onto a query
execution plan (i.e., a set of implementation procedures, one for each node in the optimized
parse tree [Date 1986D]). The interpreter evaluates query execution plans using the graph
reduction algorithm described in Section 7.1. Note that, in this architecture, queries are
transient; their existence ends with their evaluation.

Figure 7.5 extends the conventional architecture for query processing to accommodate
incremental maintenance of materialized views. The code generator is augmented to map
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the definitions of incrementally maintained materialized views onto update networks and
to integrate these view update networks into a single update network for the database. The
code generator also records each view's definition in the system catalog when the vie•w is
created. When a view Is deleted, the code generator removes its definition from the system
catalog. Also, if the view was being maintained incrementally, the code generator deletes
its update network from the database's update network. The interpreter is augmented to
activate the database's update network to update views incrementally whenever a base
relation, upon which such views depend, is changed. Also, intermediate relation states for
nodes in the network are stored between activations of the network. Note that, in this
extended architecture, view update networks, unlike query execution plans, are persistent.

Because a temporal database may contain snapshot, rollback, historical, and tempo-
ral relations, both snapshot and historical views are supported in this extended architec-
ture. The definitions of materialized snapshot views are mapped onto persistent update
networks, as formalized by Snodgrass and Horwitz, while the definitions of materialized
historical views are mapped onto persistent update networks containing nodes that im-
plement incremental historical operators rather than incremental snapshot operators. To
provide the update networks access to the database, we introduce four additional node
types. These node types implement the functions S-Differential, H.Differential, S.-Update,
and H.Update defined in the previous chapter. A differential node always Is associated with
a base relation. It appears as a root node in an update network and computes a differential
whenever its base relation is changed. An update node always is associated with a view. It
appears as a leaf node in an update network and updates its view to reflect each change to
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one of the view's underlying relations. Access to the database is restricted to differential
and update nodes; operator nodes never access the database.

EXAMPLE. Once again, let Si denote a snapshot relation with attributes {rnamu, course),
S2 denote a snapshot relation with attributes (hnhme, state), and S3 be a view defined
by the following command.

defino..:ncremental.-view (S3, ir(mnauo, state) (oenanmehnaae (SiXS2)))

Then, S3's update network is shown In Figure 7.6. Note that this update network differs
from that shown in Figure 7.2 only in that differential and update nodes have been added
to provide the network access to the database. Note also that if Si and S2 had denoted
historical relations rather than snapshot relations, the update network for S3 would have
been specified simply by replacing each node in Figure 7.6 with its historical counterpart. 0

The update networks for all materialized views defined on a temporal database to-
gether form a database update network. Within a database update network, the update
networks of individual views may be integrated to allow both node sharing among snapshot
views and node sharing among historical views. A database update network in our archi-
tecture is analogous to Roussopoulos' Logical Access Path Schema [Roussopoulos 1982A].

EXAMPLE. Assume, as in the previous chapter, that S denotes a snapshot relation, whose
current signature specifies the atl;ributes {fname, course), and that SP, SK, and SU are
views that depend on S.
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deft ins-increment al.viewv(SP, asnaaen"Phil" (S))

dofine.sincremental.-view(SM, asname-"Marilyn" (S))

define..incremental-.view(SU. r(oname) (SPUSM))

If we also assume that these are the only views defined on the database containing S, then
Figure 7.7 shows the update network for the database. Note that the update networks for

SP and SU share nodes as do the update networks for SM and SU. 0

The previous two examples illustrate some important properties of a database update

network, as we define it. First, there is exactly one differential node in the network for

each base relation upon which at least one materialized view depends. Similarly, there
is exactly one update node in the network for each materialized view. Second, all root

nodes are differential nodes, all leaf nodes are update nodes, and all interior nodes are

operator nodes. Third, the in-degree of nodes is fixed. The in-degree of differential nodes

is 0, the in-degree of update nodes is 1, and the in-degree of each operator node is either
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Figure 7.7: Database Update Network

1 or 2, depending on whether the node implements a unaxy or binary operator. Finally,
the out-degree of update nodes is 0, but the out-degree of all other nodes is only required
to be at least 1. Node sharing among view update networks determines the out-degree of
differential and operator nodes.

7.4 TQuel Prototype

To show that our architecture is adequate for incremental maintenance of materialized

historical views, we built a prototype query processor for TQuei. In this prototype, a

database updatn network, defined in terms of incremental historical operators, is used to
update materialized views incrementally following changes to their underlying relations.
The prototype consists of two components: a code generator that maintains the database

,)pd~te network and an interpreter for a restricted subset of TQuel queries. We performed

syntactic and semantic analysis of the TQuel queries by hand, since these Rspects of query

processing were not of Interest to us. The prototype is written in C using the Interface

Description Language (IDL) [Snodgrass 1988) for the specification of data structures. All

data structures, including relations, materialized views, view definitions, and view update



networks are stored in main memory. The prototype supports creation, modification, and
deletion of base relations; creation and deletion of materialized historical views; and execu-
tion of standard TQuel queries, not containing aggregates. Although we built the prototype
to confirm that the architecture described in the previous section is adequate for incremen-
tal maintenance of materialized historical views in TDBMS's, building the prototype also
provided us insight into several implementation issues, which we discuss in Section 7.5.

7.4.1 The Code Generator

The code generator maintains the database update network. Whenever it encounters a
def ine.incremental.view command, it adds the update network for the view to the
database update network. Likewise, whenever it encounters a destroy command for a
materialized view, it removes the view's update network from the database update network.

In the prototype, views may be defined as any standard TQuel query, not containing
aggregates, whose as of clause defaults to "now." TQuel queries with an as of clause
other than "now" are rollback queries. Because past states of rollback and temporal rela-
tions never change, a rollback query always produces the same result and, hence, offers no
insight to incremental view materialization. Theorem 5.1 on page 104 shows that a TQuel
query that satisfies the above restrictions is equivalent to the algebraic expression

*XG -- V.....)(&FU ... :kA)))
where, I,, ... , Ik denote relations; Ij,1, ... , lk, ,, denote the attributes of those relations;
F and G are boolean functions for non-temporal and temporal selection, respectively;
Vii, ... , Vk.nm are temporal functions; and X is the set of projection attributes. The code
generator maps view definitions of this form onto update networks of the form shown ia
Figure 7.8. The code generator constructs the update networl- for all views using this basic
structure; it doesn't attempt to tailor a view's update ne ic for its efficient execution.
Also, in adding a view's update network to the database update network, the code gen-
erator doesn't attempt to share operator nodes in the update networks of existing views.
Node sharing is limited to differential nodes. We discuss techniques for optimizing update
networks and implementing node sharing in Sectio " 1.

Nodes in the database update network are implei,,, d as IDL data structures. Nodes
contain pointers to their ancestor(s) and information about each of their descendents in
the network. Also, operator nodes contain data structures for cacheing their input relation
state(s) between activations of the network. Physical copies of these intermediatt. relation
states are stored as ',nstructured sets; the prototype doesn't implement any techniques
for efficient cacheing of intermediate rel, ,n states. In Section 7.5.2 we discuss the ap.
plicability of the strategies, proposed by L.orwitz and Roussopoulos, for efficient cacheing
of intermediate relation states in snapshot-view update networks to historical views. In
addition to the information common to nodes, each operator node contains information
particular to the incremental historical operator it implements (e.g., nodes that imple-
ment the selection operator contain a semantically analyzed parse tree for their selection
predicate).
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7.4.2 Interpreter

The interpreter executes a restricted subset of TQuel queries. The prototype supports
the standard TQuel retrieve statement, without aggregates, for display of query results
only. It also supports versions of the append and delete statements, restricted to the
insertion, modification, and removal of a single tuple from a base relation. On each change
to a base relation, the interpreter activates the database update network, which causes
the differential for the change to be propagated through the network in depth-first order.
Differentials are sets of before and after images of tuples as defined in the previous chapter.
For each operator node on a path from the base relation's differential node to a view's
update node, a procedure is called with a differential as a parameter. The procedure
performs two functions. It uses the input differential and the node's cached input relation

state(s) to compute the node's output differential. It then uses the input differential to
update the node's cached input relation state(s) for the next activation of the network. A
single copy of the procedure that performs these functions for a node type is shared by all
the nodes in the network of that type.

The interpreter supports immediate update, but not deferred update, of materialized
views. Also, it allows only the sequential processing of changes to base relations through
the update network, and it implements no recovery procedures for update networks. We

discuss extensions of the prototype to support deferred view materialization in Section 7.5.7.
Concurrency control and recovery are discussed in Section 7.5.8.

7.5 Implementation Issues

As we stated earlier, building an update network that is correct addresses only one aspect
of the implementation problem. To be of practical use, the network also must be efficient.
Hence, in this section, we examine the applicability ot existing optimization techniques,
to be used to improve the performance of update networks for snapshot views, to update

networks for historical views. We also discuss optimization techniques, to be used to
improve the performance of update networks for historical views, that have no snapshot
counterpart. In so doing, we argue that historical-view update networks are as amenable
to efficient implementation as are update networks for snapshot views.

7.5.1 Query Optimization

Because view definitions are simply algebraic expressions, a view is analogous to a stored
query that is re-executed after each change to one of its underlying relations and an update
network is analogous to a query plan. Hence, the strategies for both local and global query
optimization can be applied to update networks. We first consider the applicability of
techniques for local query optimization to the update network of a single historical view
and then consider the applicability of techniques for global query optimization to a database
update network.
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Local Optimization

Local query optimization concerns the problem of selecting the most efficient query plan
for a query from the set of all its possible query plans. This problem for snapshot queries
has beer studied extensively and heuristic algorithms for selection of a near optimal query
plan based on a statistical description of the database and a cost model for query plan
exe.cution have been proposed (Hall 1976, Jarke & Koch 1984, Krishnamurthy et al. 1986,
Selinger et al. 1979, Smith & Chang 1975, Stonebraker et al. 1976, Wong & Youssefi 1976,
Yao 1979].

One important aspect of local query optimization is the transformation of one query
plan into an equivalent, but more efficient, query plan. The size of the search space of
equivalent query plans for a snapshot query is determined in part by the algebraic equiv-
alences available in the snapshot algebra. Both Ullman and Maier identify equivalences
that are available in the snapshot algebra for query plan transformation and describe their
usefulness to query optimization (Maier 1983, Ullman 1982]. We show here that all but one
of the equivalences that hold for the snapshot algebra also hold for the historical algebra
defined in Chapter 3. In addition, we identify equivalences for the historical algebra that
involve the historical derivation operator. Because all but one of the equivalences that hold
for the snapshot algebra also hold for our historical algebra, the search space of equivalent
query plans for a historical query should be comparable in size to that for an analogous
snapshot query. Hence, our historical algebra does not limit the practical use of query plan
transformation as an optimization technique for historical queries. Also, most algorithms
for optimization of snapshot queries may be extended to optimize historical queries by
taking into account the possible presence of historical derivation operators in query plans.

Our historical algebra supports all but one of the commutative, associative, and dis-
tributive equivalences involving only union, difference, and cartesian product in set theory
[Enderton 1977]. The algebra does not support the distributive property of cartesian prod-
uct over difference. (We argue in Chapter 8 that this equivalence is not a desirable property
of historical algebras). The algebra also supports all the non-conditional commutative and
distributive laws involving selection and projection presented by Ullman [Ullman 1982].
Finally, the algebra supports the commutative law of historical selection and historical
derivation. For the theorems that follow assume that Q, R, and S are historical relation
states.

Theorem 7.1 The following equivalences hold for the historical algebra defined in Chap-

ter S.

QuR = RUQ (1)

Qý(R E RkQ (0)

&A0,( S4,2 ( 41qqF)( M)(Q)) (3)
bG, {((1, V,) ..... (I,,q, V,,,)) ('F(Q)) 40GF•f, {(1, VI),..... (I,.,, V.,))(Q)) (4)
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QO(ROS) .i(QOR)OS (5)

Q,(R•S) - (QýR)kS (6)

Qý(ROJS) = (QýR)CJ(QýS) (7)

&F(QU R) E &F(Q)C0&F(R) (8)

WF(Q R) - Q) - MF(R) (9)

*x(Q 0R) - x(Q)O*x(R) (10)

PROOF. The proofs of the first two equivalences follow directly from the definitions of his-
torical union and historical cartesian product given in Chapter 3. For the third equivalence,
consider the left-hand side of the equivalence. From the definition of historical selection
on page 28, we have that a tuple q is in &F, (&A(Q)) if, and only if, F,(q) A q E &F2 (Q),
which implies that q is in &F, (&F2 (Q)) if, and only if, Fi(q) A F2(q) A q E Q. Now consider
the right-hand side of the equivalence. Again from the definition of historical selection on
page 28, we have that a tuple q is in &F2(&F,(Q)) if, and only if, F 2(q) A q E &F, (Q), which
implies that q is in &F2 Q(F,(Q)) if, and only if, F 2(q) A F1 (q) A q E Q. Hence, the two
expressions are shown to denote the same relation state. Proofs for the other equivalences,
although more notationally cumbersome, can be constructed in a similar fashion. I

Theorem 7.2 The distributive property of cartesian product over difference does not hold

for the historical algebra defined in Chapter S.

Q k(R'-$ ) 1 (Q k R)-^(Q ý$)

PROOF. We give an example when the equality does not hold. Let Hi denote a historical
relation whose current signature specifies the attributes {fhame, state) and H2 and H3
denote historical relation whose current signature specifies the attributes {Sname, course).
Furthermore, assume that their current states are as follows.

HI = { (("Norman", {1,2,3}), ("Texas", {1,2,3})) }

H2 = { (("Norman", f1,2}), ("English", {1,2})) }

H3 = { (("Norman", {2)), ("English", {2})) }

Then,

HIk(H2 -^H3)- { (("Norman", {1,2,3}), ("Texas", {1,2,3}),

("Norman", {1}), ("English", {1})) }
(Hi k H2) -(H1I kH3 ) i { (("Norman", 0), ("Texas", 0),

("Norman", {1}), ("English", {1})) }
Hence, HI k (H2 -_ H3 ) 96 (HI 9H2)-. (HIkH3). I
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Ullman identifies several conditional equivalences involving selection and projection
that can be used in optimizing snapshot queries [Ullman 1982]. These conditional equiva-
lences also hold in our historical algebra (again, the proofs are cumbersome and unenlight-
ening). We list these equivalences here, along with their accompanying conditions.

* If the non-temporal predicate F references only attributes of Q, then 6F(Q kR)
&F(Q) k R.

e If F can be expressed as F1 A F2 , where F1 references only attributes of Q and F2

references only attributes of R, then &F(Q k R) E 0 F, (Q) k &p(R).

* If F, references only attributes of Q but F2 references attributes of Q and R, then
&F(QkR) =_ F(&F(Q)ýR).

* If F references only attributes in the set X of projection attributes, then frX(&F(Q))
&F(*X(Q)).

- If F also references attributes X' that are not in the set X of projection attributes,
then *x(&F(Q)) - *x(&F(*xux,(Q))).

* If X, and X2 are sets of projection attributes where X1 C_ X2, then *x(•*x2(Q)) -
*x1 (Q).

• If X is a set of projection attributes where Xq are attributes of Q, X, are attributes
of R, and Xq U X, = X, then *x(Q kR) =_ *X,(Q) k fx,(R).

In addition to the conditional equivalences involving selection and projection, several
conditional equivalences involving historical derivation, which have no snapshot counter-
parts, hold for the historical algebra. For these equivalences, recall from the definition of
historical derivation on page 34 that

6G, {((i,,i), .... (1.,,m.'))}(Q)

is a special form of the derivation operator that performs only the temporal selection
function. Because this special form of historical derivation has properties analogous to
those of non-temporal selection, the following equivalences involving historical derivation
hold.

6G1, {(1,I), ..--(ImqImq)}( 6O2,{( 1,10) ... ,( Im,Im,)1(Q)) =

6G2, (VIiI), ..(. (I. . I,,)),(6G). f •, VI), .... .I.. • (q)(•Q ))

If the temporal predicate G references only attributes of Q, then

6G, f (1g,,q,l),/,)....(l,,mrm)()R E 6G, f(lgj,19.~). ..... (14,wq,19,M00)ý()R"



186

If G can be expressed as G1 A G2, where G1 references only attributes of Q and G2

references only attributes of R, then

60, f((9,,1, 1,I)...(t, .. z,,.) Q ---

6G,, ((19,,1,1,1,) .... (,,,,,,1,,,. ))(Q) ý 6G2, f((t,,,J.,1)..(, .. .. )( )

If G1 references only attributes of Q but G2 references attributes of Q and R, then

6 G2 , {(VIiq,,), ... , Im,.Ir,.r))( 6G 1 , {((q,1Jq,1), .. , IqMq,IqMq))(Q)kR),

These conditional equivalences involving historical derivation are important because
they can be used to move temporal selection before cartesian product in a query plan
transformation. The above equivalences imply that if G can be expressed as G1 A G2,

where G, references only attributes of Q and G2 references only attributes of R, then

6G (aJV91, . , ( (Z,,m, ,,,) ... ().,q.)(Q)R) 6G, v(r,mr.,) .. (.. ,.))(),

Performing the temporal selection function twice may be cost effective, depending on the
size of Q and R and the selectivity of the predicates G, and G2 .

Note that no equivalences are presented that involve historical derivation and union,
difference, or projection. Historical derivation doesn't commute with projection or dis-
tribute over union or difference, even conditionally, as these operators may change attribute
time-stamps.

In summary, all the above non-conditional and conditional equivalences can be used,
along with statistical descriptions of historical databases and cost models for query plan
execution, to optimize individual historical queries.

Global Optimization

Global query optimization concerns the problem of integrating a set of query plans into
a single plan that minimizes the cost of executing all the individual plans. Optimization
of the different query plans individually does not necessarily ensure optimal overall query
processing because it does not consider the potential for savings due to sharing of com-
mon subexpreuuions among queries [Roussopoulos 1982B]. Hence, identification of common
subexpressions among queries is a central issue in global query optimization [Chakravarthy
& Minker 1986]. Although global query optimization has not been studied as extensively
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as local query optimization, algorithms for recognizing common subexpressions in multiple
query plans have been developed and strategies for integrating a set of query plans into a
single plan have been proposed (Chakravarthy & Minker 1986, Finkelstein 1982, Jarke &
Koch 1984, Roussopoulos 1982A, Roussopoulos 1982B, Roussopoulos & Yeh 1984, Satoh
et al. 1985, Sellis & Shapiro 1985].

Global query optimization allows sharing of common subexpressions among queries,
which may produce saving even when only a few queries are considered. Chakravarthy
has shown that there is a reasonable probability that, among a group of independently
generated queries, references to base relations will overlap, even when as few as five queries
are considered (Chakravarthy & Minker 1982]. Global query optimization, however, can be
costly and may not be necessarily cost effective when a few queries are considered. Because
database update networks are likely to support considerably more than five materialized
views, there may be significant potential for node sharing. Hence, the benefits to be gained
from optimizing a database update network are likely to justify the cost of executing
a heuristic global optimization algorithm. Also, because database update networks are
persistent, the cost of executing the algorithm can be amoritized across multiple activations
of the network.

Additional benefits may be gained by using global query optimization algorithms to
maintain the database update network dynamically as views are created and destroyed
and to identify materialized views and relation states cached at operator nodes that may
be used to answer ad hoc queries efficiently. This later task represents simply another
opportunity for node sharing that can be exploited through global query optimization.
In related work, Larson and Yang have studied the problem of mapping queries on base
relations onto queries on views when the views, but not the base relations, are materialized
[Larson & Yang 1985, Yang & Larson 1987].

As shown in Figure 7.7 our architecture for incremental view materialization ac-
commodates node sharing among the update networks of different views. Also, the al-
gebraic expression for a TQuel query is structurely similar to that of the frequently studied
Projection-Selection-Join-expression in the snapshot algebra, and the historical operators
all have properties similar to those of their snapshot counterparts. Hence, most algorithms
for global optimization of snapshot queries may be extended to optimize a set of historical
queries by taking into account the possible presence of historical derivation operators in
query plans.

7.5.2 Local Storage Strategies at Operator Nodes

In the TQuel prototype, only differentials are passed among nodes. Each input relation
state for an operator node in the database update network is cached at that node between
activations of the network. Physical copies of these intermediate relation states are stored
as sets with no consideration for efficiency. Yet, numerous techniques are available for
efficient cacheing of intermediate relation states between activations of update networks.
We discuss some of those efficiency techniques here. We also consider the applicability
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of the techniques, proposed by Horwitz and Roussopoulos, for cacheing of intermediate
relation states to temporal-database update networks.

In the previous chapter, both historical selection and historical derivation are defined
in terms of their input differentials alone. For these two operators, an output differential
is computed from an input differential, independent of the operator's input relation state.
Hence, intermediate relation states need not be cached for nodes that implement either of
these two operators. Cacheing is required, however, for nodes that implement the other
historical operators. For these nodes, the spectrum of conventional data structuring tech-
niques is available for building access paths to tuples in the cached relation states. Also,
data structures for cached relation states can be tailored to support the data access require-
ments of each node type, or even each individual node. For example, nodes that implement
union and difference need an access path for efficient retrieval of a tuple's value-equivalent
counterpart, if one exists, from a cached relation state. Similarly, nodes that implement
projection need an access path for efficient retrieval of tuples in a cached relation state
that match a given tuple on the projection attributes. Data structures that accommodate
efficient selective retrieval of tuples from snapshot relation states have been studied exten-
sively; they accommodate, equally well, selective retrieval of tuples from historical relation
states [Date 1986D, Ullman 1982].

Although each input relation state for a node that implements a historical operator,
other than selection or derivation, needs to be cached between activations of the update
network, these states need not necessarily be cached at the nodes to which they are input.
Rather, it may be more appropriate sometimes to cache these intermediate relation states
at the nodes from which they are output. For example, when global query optimization
is used to construct a database update network, operator nodes may have an arbitrary
number of children, where the number of children is determined by the number of view
update networks that share the node. If a node has multiple children, it may be more
efficient to cache the node's output relation state at that node rather than to cache a copy
of the relation state as an input relation state at each of the node's children.

Cacheing the output relation state of an operator node, even if it is not needed as
input to any of the node's children, may also sometimes be cost-effective. If dynamic
global query optimization is used to integrate the update networks for new views into the
existing database update network, access to the output relation state of the leaf node in a
subnetwork that can be shared may aid in initializing the view whose update network is
being added. Also, cacheing of the output relation states of certain operator nodes may
aid in recovery by reducing the effort required to restore the network following a failure.
Finally, cacheing the output relation state of a node that implements historical derivation
may be cost-effective, even if it is not otherwise needed, because the processing time of the
node can be reduced, if the node's output relation state is available (c.f., Section 7.5.5).

The approach proposed by Horwitz for implementing snapshot-database update net-
works in which cacheing of Intermediate relation states is unnecessary, except for cartesian
product nodes, can be extended to temporal-database update networks by implementing
incremental historical operators using the selective-retrieval, rather than the membership.
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teat, function. As shown by Horwitz, most incremental snapshot operators can be imple-
mented using only the membership-test function [Hlorwitz 1985]. A node that implements
an incremental snapshot operator needs to know only whether a tuple in its input differ-
ential is in its input relation state (c.f., Section 6.3.2), and a call to the membership-test
function of the node's parent provides this information. A node that implements an in-
cremental historical operator, unlike its snapshot counterpart, needs to know whether a
tuple in its input differential has a value-equivalent counterpart in its input relation state
(c.f., Section 6.4.2). Hence, simple set-membership tests on a node's input relation state(s),
while adequate to implement incremental snapshot operators, are inadequate to implement
their historical counterparts. The selective-retrieval function, however, can be extended to
provide the needed information. Rather than return tuples in a relation state that match
values specified for some subset of attributes, selective-retrieval could be defined to return
tuples that match the values specified for the value-counponent of some subset of attributes.
Then, a node could call the selective-retrieval function of its parent to determine whether a
tuple in its input differential had a value-equivalent counterpart in its input relation state
and, if so, to return that tuple.

The approach proposed by Roussopoulos for implementing snapshot-database update
networks, in which intermediate relation states are cached using indexing, also can be
extended to temporal-database update networks. The following changes are necessary for
the approach to work for temporal-database update networks.

The output relation state of a union or difference node, which is cached a. a vector
of addresses in snapshot-database update networks, is cached as a two-dimensional
matrix of address pairs in temporal-database update networks. Each pair of addresses
points to value-equivalent tuples in the node's input relation states that contribute to
a single tuple in its output relation state. One of the addresses is NIL if a tuple in one
o; the input relation states doesn't have a value-equivalent counterpart in the other
relation state. This complication arises because two value-equivalent snapshot tuples
are, by definition, identical, whereas two value-equivalent historical tuples need not,
and most likely will not, be identical.

e The output relation state of a projection node, which is cached as a vector of ad-
dresses in snapshot-database update networks, is cached as a vector of sets, where
each set contains the addresses of tuples in the node's input relation state whose
attribute value-components match on the projection attributes. This complication
arises because the projections of two tuples, if value-equivalent, need not be iden.
tical. Whereas two snapshot tuples that match values on the projection attributes
contribute exactly the same information to the projection, two historical tuples, even
though they match value-componentr on the projection attributes may contribute
different temporal information to the projection. Note tham although the addresses of
those tuples In the node's input relation state whose contribution of temporal infor-
mation to an output tuple is subsumed by that of other tuples need not be included
in the cache, identification of such tuples may not be cost-effective.
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o The output relation state of a historical derivation node, which has no counterpart in
a snapshot-database update network, is cached here as a vector of addresses, where

each address points to a tuple in the node's input relation state that is mapped onto

a tuple in the node's output relation state.

The cacheing of the output relation state of a selection node as a vector of addresses and the

output relation state of a cartesian product node as a two-dimensional matrix of address
pairs need not be changed. The snapshot and historical versions of each of these operators

perform the same function, only on snapshot and historical tuples, respectively.

The approaches proposed by Horwitz and Roussoupoulos for cacheing intermediate

relation states in database update networks can also be combined, with or without vari.

ations, to form hybrid approaches for cacheing intermediate relation states in database

update networks. We present here only one such approach. In this approach, the following

rules are used to cache intermediate relation states between activations of a temporal-

database update network.

e Intermediate relation states for selection and derivation nodes are not cached; these

nodes are memoryless.

@ Union and difference nodes are implemented using selective-retrieval functions to
eliminate the need to cache intermediate relation states for these nodes.

9 The output relation states of cartesian product nodes are cached as vectors rather
than two-dimensional matrices. Each element in the vector is a sequence of addresses,

where the addresses point directly to the subtuples (e.g., base relation tuples) that

make up a tuple in the relation state.

* The output relations states of projection and derivation nodes are cached in materi-
alized form.

This approach takes advantage of the fact that intermediate relation states for selection
and derivation nodes need not be cached. Union and difference are implemented using
selective-retrieval functions because doing a union or difference operation on two value-

equivalent tuples whenever a tuple in a union or difference node's output relation state is
accessed may be more cost-effective than storing that relation state in materialized form.
Cacheing the output relation states of cartesian product nodes as vectors, where each
element in the vector is a sequence of addresses, allows tuples in those relation states to be
materialized via a single level of indirection. Hence, in this approach, we are able to save

space by cacheing addresses rather than tuples at cartesian product nodes but do not have
the problem, present in Roussopoulos's approach, of having to follow arbitrary levels of

indirection to materialize a tuple. The output relation states of projection and derivation
nodes are cached in materialized form because cacheing the nodes' output relation states

in materialized form is likely to be more cost-effective than recomputing a tuple in those
relation states each time it is accessed.
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In summary, there are many techniques available for cost-effective cacheing of inter-
mediate relation states between activations of a database update network. Some are com-
plementary while others are mutually exclusive. The appropriateness of these techniques
to the design of a cacheing system for a particular update network is application-specific,
depending on factors such as processing environment (e.g., centralized or distributed),
processing constraints, storage constraints, communication constraints, size of relations,
selectivity of nodes, and stability of the network. Also, a cacheing system for an update
network, once designed, can be changed dynamically to tune the performance of the net-
work. The problems that arise in the design of a cacheing system, and their solutions,
however, are similar for both snapshot-database and temporal-database update networks.

7.5.3 Representation of Attribute Time-stamps

In the TQuel prototype the valid-time component of each attribute in a tuple is stored as a
sequence of temporally ordered intervals, where each interval is closed at its left endpoint
and open at its right endpoint. The sequence denotes the minimal set of intervals that
covers all the chronons in the attribute's valid-time component.

EXAMPLE. Assume that {2, 5, 6, 7, 19, 20, 21, 22, 23, 24) is the valid-time component of
an attribute. Then, it would be stored as the sequence ([2, 3), [5, 8), [19, 25)). r

This representation of the valid-time components of attributes as sequences of inter-
vals has two benefits: it is a space-efficient representation and the implied temporal ordering
of the intervals can be used to advantage when implementing the historical operators that
manipulate attribute time-stamps (i.e., union, difference, projection, and historical deriva-
tion). Note also that it may be possible to share sequences or subsequences of intervals
among attributes that have chronons in common.

7.5.4 Representation of Historical Differentials

In the previous chapter, a historical differential was defined as a set of before and after
images of tuples rather than as a set of incremental positive and negative temporal changes
to tuples. This definition of historical differentials simplified somewhat definition of the
historical operators. Our definition of historical differentials also allowed the historical
derivation operator to be defined as a function on an input differential alone. If differentials
had been defined as incremental positive and negative temporal changes to tuples, historical
derivation would had to have been defined as a function on both an input relation state and
an input differential. Hence, implementation of memoryless historical derivation nodes in
a database update network requires that differentials be as defined in the previous chapter.

Also, the cost of processing a differential at a cartesian product node is less using
our differentials. When differentials are sets of before and after images of tuples, a carte-
sian product node computes the output differential for a change to a tuple in one of its
input relation states simply by concatenating the before and after images of the tuple that
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changes with each tuple in its other input relation state. Concatenation alone, however, is
inadequate in the other case. Because cartesian product does not distribute over difference
in the historical algebra (c.f., Section 7.5.1), concatenation of a tuple that represents an
incremental negative temporal change to a tuple in one of a cartesian product node's input
relation states with a tuple in its other input relation state does not produce a correct
incremental negative change for a tuple in the node's output relation state.

EXAMPLE. Let H1 denote a historical relation whose current signature specifies the at-
tributes {hname, state}, H2 denote a historical relation whose current signature specifies
the attributes {sname, course}, and Aij" denote an incremental negative differential for HI
(i.e., information that is removed from Hi by an update), where

HI = { (("Norman", {J,2,3}), ("Texas", {1,2,3})) }

H2--{ (("Norman", {1,2}), ("English", {1,2})) }

A'-- { (("Norman", {2}), ("Texas", {2})) }

If a cartesian product node that implements H, ) 1 H2 were to simply concatenate tuples in
A- and H2, the incremental negative differential A-" 1,2 (i.e., the information that should
be removed from H1 x H2 as a result of the update) would contain the single tuple

{ (("Norman", {2)), ("Texas", {2}), ("Norman", {1,2}), ("English", {1,2})) }

but, the correct value for A- is

{ (("Norman", {2}), ("Texas", {2)), ("Norman", 0), ("English", 0)) }

If, however, we were to represent this incremental negative differential using before and
after images of tuples, AHI would be

. ((("Norman", {1,2,3)), ("Texas", (1,2,3))), (("Norman", 12}), ("Texas", (21))) }

and Ami,,,2 would be

{ (((O"Norman", f1,2,3)), ("Texas", f1,2,3}), ("Norman", {1,2}), ("English", {1,2})),

(("Norman", {2}), ("Texas", (2)), ("Norman", {1,2}), ("English", (1,2)))) } . C

Although defining differentials as sets of before and after images of tuples eliminates
the need to cache intermediate results for historical derivation nodes between update net-
work activations and allows cartesian product to be implemented efficiently, it also may
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cause some inefficiencies. To minimize the flow of differentials through the database up-
date network, nodes that implement union, difference, projection, and historical derivation
should only propagate a before and after image pair (hb, h.) to their children if hb y hG.
Implementation of this restriction on the flow of differentials, however, requires that these

operators perform an equality check on each differential pair they output, which may be
expensive if the valid-time components of attributes in a tuple's before and after images are
complex, but similar. Hence, it might be more cast-effective not to perform the check or to
perform only a partial check (e.g., comparing no more than a fixed number of intervals for
each attribute of the two tuples). Checking output differentials for equality is another task
performed at nodes that can be adjusted dynamically to maximize overall performance of
the network.

7.5.5 Local Processing Strategies at Operator Nodes

In this section we discuss the time complexity of propagating a change to a single tuple
through the nodes in a database update network and present some techniques for reducing
processing costs at nodes. As we emphasize below, the cost of processing a historical dif-
ferential at a selection or cartesian product node in a temporal-database update network is
similar to that of processing an analogous snapshot differential at a selection or cartesian
product node in a snapshot-database update network. The cost of processing a historical
differential at other node types, however, depends primarily on the number of attributes in
a tuple and the number of intervals in the valid-time components of attributes. Also, opti-
mization techniques exist that can be applied at projection and historical derivation nodes
to reduce their processing costs. For this discussion, we assume that a differential is the be-
fore and after image of a single tuple. Also, we consider only three time complexity metrics:
the maximum number of intervals in an attribute time-stamp of a tuple in the differential,
the maximum number of attributes in a tuple, and the maximum number of tuples in an
input relation state for a node. We do not consider the cost of accessing tuples cachel in
intermediate relation states; this cost will depand strongly on the storage structure used
to cache the tuples. Space complexity was discussed informally in Section 7.5.2.

Selection and Cartesian Product

The time complexity of processing a differential at a selection or cartesian product node
is similar in temporal-database and snapshot-database update networks. The cost of pro-
cessing a differential at a selection node depends only on the complexity of the selection
predicate, while the cost of processing a differential for one of a cartesian product node's
input relation states depends on the number of tuples in the node's other input relation
state. Hence, a selection nude has constant time complexity in the number of intervals in
an attribute time-stamp, the number of attributes in a tuple, and the number of tuples
in the input relation state. A cartesian product node has constant time complexity in the
number of intervals and the number of attributes, but has linear time complexity in the
number of tuples in an input relation state.
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Union and Difference

Processing a differential at a union or difference node requires that the temporal union or
d&iference be computed for, at most, two pairs of tuples. Furthermore, these calculations
are only necessary if a differential for one of the node's input relation states has a value-
equivalent counterpart in the node's other input relation state. The cost of doing a temporal
union or difference of two tuples is the cost of performing union or difference operations on
the valid-time components of the tuple's attributes. Because valid-time is represented as
a temporally ordered sequence of intervals, the processing time for the temporal union or
difference of two tuples depends on the number of intervals in the valld-time components
of the attributes in the two tuples. Hence, union and difference nodes have linear time
complexity in the number of intervals and the number of attributes, where their total
processing costs depend on the product of the two. Both union an difference nodes have
constant time complexity in the number of tuples.

Projection

If we assume that a projection node's input relation state is cached, processing a change
to a tuple at a projection node requires that two historical projections be performed on
the subset of tuples in the node's input relation state that matches the attribute value-
components of the tuple being changed on the projection attributes, one before the change
and the other after the change. In the worst case, two historical projections of the entire
input relation state would be required, but only if all tuples in the input relation state
matched the attribute value-components of the changed tuple on the projection attributes.
Because historical projection performs a temporal union of the valid-time components of the
projection attributes of all the qualifying tuples, the time required to process a differential
at a projection node depends on the number of qualifying tuples, the number of projection
attributes, and the number of intervals in the valid-time components of those attributes.
Hence, projection nodes have linear time complexity in the number of intervals, number of
projection attributes, and the number of tuples, where the processing costs depend on the
product of the three.

There are at least three techniques that can be used to reduce processing costs at
projection nodes. The obvious technique is to compute the historical projection on all the
qualifying tuples, except the tuple being changed, once and reuse this temporary result,
along with the before and after images of the tuple being changed, to compute the before
and after images of the output differential.

The cost of processing a differential at a projection node also may be reduced by ex-
tending a technique proposed by Blakeley, Larson, and Tompa for efficient implementation
of incremental snapshot projection [Blakeley et al. 1986A] to incremental historical projec-
tion. They propose that the output relation state of a snapshot projection node be cached
and that a count be maintained for each tuple in the output relation state of the number
of tuples in the node's input relation state that project onto that tuple. Then, whenever a
tuple is added to the node's input relation state, its insertion is recorded in the cache. If
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the tuple's projection is already in the cache, its reference count in incremented; otherwise,
the projection is added to the cache with an initial reference count of one. Likewise, when-
ever a tuple is deleted from the node's input relation state, its deletion is recorded in the
cache. If the tuple's projection in the cache has a reference count of one, the projection is
physically removed from the cache; otherwise, Its reference count is simply decremented.

This techrique can be applied to nodes that implement historical projection, with
one important change. The reference counts can't be associated with tuples; they must
be associated with chronons in the valid-time components of attributes. In the snapshot
algebra, a tuple in a projection node's output relation state may be the image under
projection of an arbitrary number of tuples in the node's input relation state. Analogously,
in the historical algebra, a chronon in the valid-time component of an attribute of a tuple in
a projection node's output relation state may be the image under projection of a chronon
in the valid-time component of the same attribute of an arbitrary number of tuples in
the node's input relation state. A variation of the algorithm described above for snapshot
projection can be used to process a differential at a historical projection node when the
node's output relation state is cached and reference counts are maintained for chronons,
rather than tuples.

Finally, the most cost-effective approach for implementing projection nodes may be
the use of both techniques described above in combination. Under this hybrid approach,
tuples in a projection node's input relation state would be cached and projections would be
recomputed for each differential until the number of tuples in the node's input relation state
that matched value components on the projection attributes reached a threshold, which
could be fixed or dynamically set to manage the node's performance. Once the threshold
had been reached, the projection of the qualifying tuples would be computed and cached,
along with chronon reference counts, for use in processing future differentials for this subset
of tuples.

Historical Derivation

Processing costs at historical derivation nodes, like those at projection nodes depend on
the number of intervals in the valid-time components of attributes and the number of
attributes in a tuple. To process the before or after image of an m-tuple, a historical
derivation node must evaluate a temporal predicate G and temporal functions V1, ... , V,.
for all possible assignments of intervals in valid-time components of attributes to their
attributes' names. Hence, historical derivation nodes have, in the worst case, exponential
time complexity in the number of attributes, polynomial time complexity in the number
of intervals, and constant time complexity in the number of tuples. Note, however, that
this time complexity for answering a query involving non-synchronized attributes (i.e.,
attributes whose values do not change simultaneously [Navathe & Ahmed 1987]) is the
same as that in historical algebras where relations are restricted to synchronized attributes
and tuples are time-stamps. In those algebras, a cascade of cartesian products is required
to answer a query involving multiple non-synchronized attributes. The time complexity of
a cascade of cartesian products is exponential in the number of cartesian products, which
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Is analogous to the number of non-synchronized attributes. Embedding the "temporal
cartesian product" of attribute time-stamps in the historical derivation node, however, has

an advantage over the use of cartesian product nodes to perform this task. Optimization
strategies are more easily applied within the historical derivation operttor than across
cartesian product nodes to reduce processing costs.

Although historical derivation nodes have exponential time complexity in the number
of attributes and polynomial time complexity in the number of intervals, there are several
techniques for reducing this cost. These heuristics make the average-case cost substantially

less than the worst-case cost. For example, not all attribute time-stamps need to be
considered when evaluating a tuple. Only assji,aments of intervals to attribute names need
be considered for those attributes whose names appear in either the temporal predicate
G, or a temporal function V1, ... , V,/. We used this technique in our prototype TQuel
processor to reduce the cost of performing historical derivations to reasonable levels. Also,
if a temporal function Vi, 1 :5 j • m, is defined by an expression that is simply an attribute
name, that attribute need not be considered in the assignment of intervals to attribute

names, unless the attribute name also appears in G or some other temporal function. If
Vi = Ik, 1 <_ j, k ( m, which is common, the time-stamp of the attribute corresponding to
Vj in the output tuple is simply the time-stamp of attribute l' in the input tuple, if there is
at least one assignment of intervals to attribute names that satisfies G, and the empty set,

if there is no assignment of intervals to attribute names that satisfies G. These techniques
alone will likely be sufficient to make the cost of processing a differential at most historical
derivation nodes reasonable because most historical queries are likely to reference only a
few attribute names in their predicate and temporal functions.

For those attributes that must be included in the assignment of intervals to attribute
names, other heuristics are available for reducing further the number of combinations of
assignments that must be considered. For example, the temporal predicate can be used,

along with the temporal ordering of intervals in each attribute time-stamp, to limit the
portion of the search space of assignments that must be considered. This technique provides
the opportunity to reduce processing costs at some historical derivation nodes significantly.

Finally, less dramatic, but none the less effective, techniques for reducing processing
costs are available. For example, the results of computing common subexpressions for
the functions V1, ... , V.. can be shared. Also, if the output relation state at the historical
derivation node is cached, the before image of the tuple in the output differential is available

and, hence, requires no recomputation.

Composite Operator Nodes

In snapshot-database update networks, it may be cost-effective to combine two or more
snapshot operations into a single composite operator node [Snodgrass 1982]. For example,

combining selection and cartesian product into a single node may be beneficial. Analogies
exists for temporal-database update networks. We consider one here. In Section 7.5.1,
we presented algebraic properties of the historical algebra that can be used in optimizing
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update networks. One useful property, the distributive property of historical derivation
over cartesian product, does not hold, however, except in restricted cases. Even if G can
be expressed as G, A G2, where G0 references only attributes of Q and G2 references only
attributes of R,

6G1 V9., Y) .... I V-9 V,,,,,q))(Q) 6G2 WV, V1t,I,,,) .... P..",V..)(

The property does not hold only because the expression on the left may produce a tuple
whose attribute time-stamps for Iq,,, ... , Iq,-q or for I,.,, ... , I,,., all are the empty set.
The expression on the right disallows these tuples because a historical derivation oper.
ator, by definition, can't output a tuple whose attribute time-stamps all are the empty
set. We can, however, effectively gain the benefits of this property by constructing a
composite operator node that performs both historical derivation and cartesian prod-
uct. In this node, a preprocessor for the node's left input would perform the function
of 6GI, {(lq,iVqj), .... (Iq,mq,Vqm,))(Q) and a preprocessor for the node's right input would
perform the function of 6G., {(fri,Vi) ..... (4.m, vr,m))(R), with one exception. Both would
pass output tupies whose attribute time-stamps are all the empty set to code that imple-
ments a slightly revised cartesian product operation. This code would preform the function
of cartesian product, also with one exception. It would not output tuples whose attribute
time-stamps all were the empty set, but would output tuples whose attribute time-stamps
for either 1q,1, ... , 1 qmq or for 1,,, ... , hmv all were the empty set.

Table 7.1 summarizes the time complexity at historical operator nodes for processing
single-element differentials.

7.5.6 Dynamic Time-stamps

Until now, we have only considered attribute time-stamps that contain intervals whose
endpoints are fixed. Situations, however, often arise when it is appropriate to include, in
an attribute's valid-time component, a dynamic interval (i.e., one whose right endpoint is
not fixed but moves forward as time passes). For example, the time when an employee
receives his current salary is often represented as a dynamic interval whose right endpoint
is "now." We examine in this section the applicability of our architecture for incremental
maintenance of materialized views to temporal databases in which time-stamps are allowed
to contain a dynamically expanding interval.

When attribute time-stamps are allowed to contain dynamic intervals, expression eval-
uation requires that the right endpoint of such intervals be fixed for purposes of expression
evaluation to allow for temporal comparisons and computations. The value assigned to
a dynamic interval's right endpoint for expression evaluation depends on the meaning as-
sociated with that endpoint. For example, if dynamic intervals are assumed to extend
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Time Complexity

Tuple Attribute Interval

Selection Constant Constant Constant

Cartesian Linear Constant Constant
k Product

SUnion Constant Linear Linear

SDifference Constant Linear Linear
0 Projection Linear Linear Linear

Historical Constant Exponential Polynomial
Derivation

Table 7.1: Time Complexity of Incremental Historical Operators

"forever," then the appropriate value would be oo. If, however, dynamic intervals are as-
sumed to extend only to "now," then the appropriate value would be the start time of the
expression's evaluation, obtained from a system clock.

Our architecture accommodates time-stamps containing dynamic Intervals, but not
necessarily without performance penalty. If the value assigned the right endpoint of a
dynamic interval is oo, dynamic intervals can be handled the same as fixed Intervals with-
out problem. If the value assigned the right endpoint of a dynamic interval is the start
time of expression evaluation and post-active changes are not allowed (i.e., no chronon in
an attribute time-stamp is greater than the chronon that denotes the start time of the
expression's evaluation), dynamic intervale also pose no problem. If, however, the value
assigned the right endpoint of a dynamic interval is the start time of expression evaluation
and post-active changes are allowed, then a problem arises. A temporal predicate or a
temporal constructor may produce a different result depending on when the expression is
evaluated.

Example. Let H denote a historical relation whose current signature specifies the attributes
{hname, state). Assume that, for a tuple in H, the valid-time component of attribute hname
is [25, NOW] and the valid-time component of attribute state is [45, 48). Now consider
the temporal predicate end of lname precede start of state. If the predicate were
evaluated at time 40, the predicate would be true. But, if the predicate were evaluated at
time 45, or after, the predicate would be false. a

Because expansion of a dynamic interval is implicit rather than explicit, differentials for
these changes would not be generated at differential nodes in a database update network.



199

Hence, these implicit changes to dynamic intervals would not be propagated through the
network to view update uodes. Yet, a view defined in terms of the temporal predicate on
relation H in the above example would possibly chan~ge at time 45. A change, however,
would not be recognized. There are two basic solutions to this problem. One possible, but
inefficient, solution would be to make all implicit changes to dynamic intervals explicit by
having the differential nodes generate differentials, at the start of each chronon, for tuples
containing dynamic intervals in their attribute time-stamps. A more practical solution
would be to identify at each node, for tuples containing a dynamic interval, the future
time, if any, when the interval would cause the node's output to change. These tuples
could then be queued at the node for reprocessing at that time. If a differential changing
that tuple arrived in the interim, the queued tuple would simply be dequeued. Union,
difference, projection, and historical derivation nodes all would have to be augmented to
perform this task. Selection and cartesian product nodec, because they do not dealt with
attribute time-stamps, would be unaffected.

7.5.7 Deferred View Materialization

The TQuel prototype supports only immediate-incremental view materialization. Our ar-
chitecture, however, also accommodates deferred-incremental view materialization. Under
deferred view materialization, a view is not updated immediately after each change to one
of its underlying relations but only just before each access to the view itself. Deferred
view materialization has several advantages over immediate view materialization [Horwitz
1985, Roussopoulos & Kang 1986A, Roussopoulos 1987]. First, the completion of transac-
tions that change base relations are not delayed while views are being updated. Second,
differentials can be collected and consolidated to reduce traffic through the network and
processing costs at nodes. Finally, views may be updated as a background task to make
use of otherwise unused resources. The obvious disadvantage of deferred view materializa-
tion is that access to a view may be delayed while the view is being brought up-to-date,
although users can eliminate this delay by accessing an "almost up-to-date" copy of the
view [Roussopoulos 1987]. Also, deferred view materialization is not appropriate for all
applications. For example, it would be inappropriate if views were being used to drive
real-time display systems.

To implrment deferred rather than immediate view materialization, differential nodes
collect and consolidate differentials, but only propagate the consolidated differentials to
their children on demand. Just before a view is to be accessed, the differential nodes
for the base relations upon which the view depends propagate their differentials to the
view's update node. Only after the propagated differentials have been processed by the
view's update node, may the view be accessed. Although simple in concept, deferred view
materialization requires additional data structures and control mechanisms not needed
for immediate view materialization. For example, data structures are needed to store
differentials at differential nodes and control mechanisms are needed to record whether
views are up-to-date and to initiate the updating of views as needed.

Also, node sharing in update networks further complicates deferred view materializa-
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tion. For example, a base relation may be an underlying relation in multiple subnetworks
assoziated with a single view; it also may be an underlying relation of an arbitrary num-
ber of views. Hence, a differential node may have multiple children associated with the
same view as well as children associated with different views. When a differential node
is instructed to propagate its differential to a view, does it propagate the differential to
all its children or only to children of that view? If it propagates the differential to all Its
children, access to the view that needs to be updated may be delayed arbitrarily long, and
resources may be wasted updating views with differentials that may be negated before the
views are accessed. If, however, the node propagates the differential on!y to its children
for one view, each edge that emanates from the node must be associated with a specific
view or set of views (if view update networks are integrated using optimization techniques)
and data structures for storing differentials must be made more complex to record which
differentials have been propagated to which children and to indicate when differentials have
been propagated to all children and can be removed. Roussopoulos describes one technique
for efficient maintenance of this information (Roussopoulos & Kang 1986A]. In this tech-
nique time-stamp records are inserted into a node's differential file to record the number
of children to whom the preceding portion of the differential has been propagated. Only
when this count equals the node's number of children, can the preceding portion of the file
be removed. Also, the time-stamp for the lastest update to each view must be recorded
between updates to indicate the portion of differentials that have already been applied
to the view. Note also that, if node sharing among view update networks is allowed at
operator nodes, they too must deal with them same implementation issues.

7.5.8 Concurrency Control and Recovery

We now consider the applicability of existing techniques for concurrency control and re-
covery to temporal databases in which update networks are used to maintain materialized
views incrementally. Figure 7.9 shows how a standard model of concurrency control and re-
covery in conventional, non-temporal DBMS's [Bernstein et al. 1987] could be adapted for
use in our TQuel prototype. IHere the semantic analyzer, code generator, and interpreter
all issue read, write, commit, and abort operations to the transaction manager, which per-
forms any necessary preprocessing before forwarding the operations to the scheduler. The
scheduler, which is responsible for the concurrent execution of the active transactions, then
orders the operations so that their execution will be both serializable and recoverable. The
recovery manager processes read, write, commit, and abort operations issued by the sched-
uler atomically to ensure that their execution is serializable. The cache manager moves
data between stable storage and volatile storage using its fetch and flush operations. The
recovery manager partially controls the cache manager's flush operations to ensure that
operations, once executed, are recoverable (Bernstein et al. 1987].

As in a non-temporal DBMS, base relations, along with the system catalog, reside
in stable storage and are recoverable following a failure. The database update network
and the intermediate relation states cached at the nodes in the network may, but need
not, reside in stable storage. The update network and its intermediate relation states
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can always be reconstructed from the base relations and view definitions in stable storage
following a system failure. Hence, the update network and its intermediate relation states,
unlike base relations and view definitions, need not be recoverable. The update network
(or some portion of the network) may, however, be stored in stable storage to eliminate
the need to reconstruct the network following a failure. Whether the update network, or
some portion of the network, is made recoverable, is an efficiency issue that depends on the
cost of maintaining a recoverable network, the cost of reconstruction, and the probability
of failure.

Concurrency Control

Although our TQuel prototype supports only sequential processing of differentials through
the database update network, standard locking mechanisms [Bernstein et al. 1987] can be
used to allow concurrent retrieval and update of views in the network, whether an imme-
diate or deferred materialization strategy is used. If the immediate view materialization
strategy is used, conservative two-phase locking can be used to lock for update all the base
relations to be updated, along with the nodes in their view dependency graphs, at the start
of each transaction. Then, strict two-phase locking can be used to release these locks only
after the transaction is committed.

Other more optimistic locking strategies also can be used, at the expense of possible
cascading aborts if deadlock occurs or a transaction is aborted. For example, locking of a
base relation, along with its view dependency graph, may be delayed until just before it is
updated. Similarly, once the base relation is updated and the differential computed, the
locks on the nodes in the base relation's view dependency graph may be released as the
differential for the update is propagated through the network. If depth-first search is used
to propagate the differential, a node's lock may be released as the propagation is completed
at the subtree rooted at that node. Alternatively, if breadth-first search is used, a node's
lock may be released as the propagation is completed at that node. Another optimistic
locking protocol delays the locking of a node in a base relation's view dependency graph
until just before the node is to process a differential and then releases the lock immediately
after the node has processed the differential. In this locking protocol, a transaction that
accesses a view must lock for retrieval all base relations used to derive the view while the
view is being accessed. This latter action is necessary to ensure that a view is consistent
with its underlying relations when it is accessed.

If the deferred view materialization strategy is used, a variation of two-phase locking
proposed by Roussopoulos can be used [Roussopoulos 1987]. When a view is to be updated,
all base relations that are used to derive the view are locked for retrieval to prevent their
update during the update of the view, and all other nodes in the view's update network are
locked for update. Locks at the nodes are then released as the differentials are propagated
toward the view's update node.

Although a locking protocol is needed to control concurrent access to snapshot and
historical relations and to the current states of rollback and temporal relations, the protocol
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need not be extended to control concurrent access to the past states of rollback and temporal
relations. Past states of rollback and temporal relations are read-only; once recorded, they
can't be changed. Hence, a rollback operation, because it accesses a past state of a rollback
or a temporal relation, need never be delayed, even if the relation it is accessing is locked
for update.

Concurrent execution of transactions may complicate slightly the implementation of
rollback operations. Rollback operators roll a relation back to its state at a specified time
(i.e., the state of the relation immediately following the most recently committed trans-
action on the relation before the specified time). Hence, to support rollback operations,
a transaction's commit time needs to be assigned to each change the transaction makes
to the database. Because a transaction's commit time is not known until the end of the
transaction, however, it can't be recorded when changes are made. Rather than update
the database after the transaction is committed to record the transaction's commit time
with each change, it may be more efficient to record a transaction number (e.g., transac-
tion start time) with each change and to maintain a mapping from transaction commit
times onto transaction numbers. If transactions are processed sequentially, the elements
in a relation's class, signature, and state sequences will be ordered by transaction number
as well as transaction commit time. If, however, transactions are processed concurrently,
the elements in each of a relation's three sequences, while ordered by transaction commit
time, may not necessarily be ordered by transaction number. Rolling back a relation to a
specified time is slightly more complicated in the latter case because the transaction num-
bers assigned to elements in each of the relation's three sequences do not necessarily form
a linearly ordered search space. Hence, rolling back a relation to a specified time also may
require multiple accesses to a mapping from transaction numbers onto transaction commit
times, A time-stamp concurrency control protocol [Bernstein et al. 1987], however, could
be used to support the concurrent execution of transactions while ensuring that each re-
lation's class, signature, and state sequence was ordered by transaction number as well as
commit time.

Recovery

Although recovery of base relations and the system catalog is necessary, recovery of the
update network, materialized views, and the intermediate relation states cached at operator
nodes is not. Any portion of the update network can always be reconstructed from the
base relations and the system catalog, if necessary. Recovery of the update network may,
however, be desirable for efficiency of restart following a system or device failure. In this
case, standard techniques for recovery management of base relations [Bernstein et al. 1987]
can be used for recovery management of intermediate relation states, assuming they are
cached in materialized form. Also, recovery capabilities need not extend to the entire
network. Any subnetwork rooted at base relations may be recoverable without the entire
network being recoverable. Finally, differentials can be used to recover the update network
from a transaction abort. A reverse differential (i.e., before images and after images are
switched) is simply propagated through a base relation's view dependency graph to negate
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the effects of the original differential.

7.5.9 Aggregates

Incremental computation of aggregates presents the same problem in temporal-database
update networks as in snapshot-database update networks. Some aggregates, such as sum
and avg, can be updated incrementally without problem, while other aggregates, such as
min and max, may require that their values be recomputed on a change to their underlying
relations (e.g., a tuple containing the value of a max aggregate is deleted). To improve the
efficiency of maintaining aggregates of this latter type, Hanson suggests that a queue of
possibly duplicate candidate aggregate values, rather than a single value, be maintained
[Hanson 1987B]. Then, if a change to an aggregate's underlying relation changes or deletes
a tuple containing the aggregate's value, the aggregate's new value could be assumed to be
the next element in the queue. Only if the queue were empty, would the aggregate have
to be recomputed. This technique can be extended to apply to historical aggregates by
maintaining queues for each chronon at which the aggregate has a value. Appropriate data
structures for maintaining such queues have yet to be studied.

7.6 Summary

In this chapter we discussed an architecture for query processing in TDBMS's that accom-
modates the incremental maintenance of materialized views. We then described a prototype
query processor for TQuel that we built using this architecture. Construction of this pro-
totype is an existence proof that the paradigm for incremental expression evaluation, along
with the incremental snapshot and historical algebras defined in the previous chapter, is
adequate to implement incremental view materialization in TDBMS's.

We also identified problems that arise when materialized historical views are main-
tained incrementally and proposed various techniques for resolving those problems. Our
historical algebra is, in many respects, similar to the snapshot algebra. Hence, similar prob-
lems arise when either materialized snapshot or materialized historical views are maintained
incrementally. Also, the solutions to the problems are often similar, if not the same, for both
snapshot and historical views. For example, the techniques for global and local optimiza-
tion of update networks, cacheing of intermediate relation states, and concurrency control
and recovery apply equally to update networks for either snapshot or historical views. Also,
although particular to historical views, representation of attribute time-stamps and histor-
ical differentials is straightforward. Other problems, however, either have no analogue in
snapshot databases or are not amenable to simple solution. These include the problems
of accommodating dynamic time-stamps efficiently, reducing the search space of interval
assignments at historical derivation nodes, and implementing all aggregates efficiently. Ad-
ditional research will be required to find solutions to these problems.

In the next chapter, we review other proposals for adding valid and transaction time to
the snapshot algebra, identify a set of properties desirable of such extensions, and compare
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our approach and those of others, using the properties as evaluation criteria.



Chapter 8

Evaluation Criteria

In Chapters 3 and 4 we identified several basic design decisions that one must make to
extend the snapshot algebra to handle valid time and transaction time.

@ Is valid time associated with tuples or with attributes?

* How is valid time represented? Are time-stamps, which represent valid time, chronons,
intervals, or sets of chronons, not all of which are consecutive?

* Are attributes required to be atomic.valued or are they allowed to be set-valued?

* Is the set-theoretic semantics of the basic relational operators retained and new op-
erators introduced to deal with the temporal dimension of the real-world phenomena
being modeled or is the semantics of the relational operators extended to account
for the temporal dimension directly? If the semantics of the relational operators
is extended to handle time, how do these operators compute the valid time of the
attributes in resulting tuples?

e How does the algebra handle time-oriented operations like temporal selection, tem-
poral projection, and temporal aggregation?

* Is transaction time associated with attributes, tuples, or relation states?

Although the choices one makes for these design decisions determine important properties
of the resulting algebraic language, we stated our choices in Chapters 3 and 4 without
explanation. In this chapter we motivate our choices.

Over the past decade, no less than 11 temporal extensions of the snapshot algebra
(including ours) have been proposed, some with several variants. Most of these proposals
support only valid time and can be termed historical algebras. Others, like ours, support
both valid time and transaction time. We hereafter refer to these as temporal algebras.

Even with this significant interest in temporal extensions of the snapshot algebra, previous
research has not focused on the properties that historical and temporal algebras should
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have. A set of well-defined, objective criteria for judging the relative merit of these various
algebras has yet to be proposed. Hence, we identify here a set of 29 criteria for evaluating
temporal extensions of the snapshot algebra. These criteria, although not all compatible,
are well-defined, have an objective basis for being evaluated, and are arguably beneficial.

Two important benefits accrue from the identification of a comprehensive set of eval-
uation criteria. First, the criteria provide a means for objective evaluation of algebras in
terms of their properties. Second, the criteria can be used as a guide in making design
decisions that will result in an algebra with a maximal subset of desirable properties.

After a brief review of the algebras proposed by others, we present our set of 29
criteria for evaluating temporal extensions of the snapshot algebra. We then evaluate our
algebra and those proposed by others against the criteria. We conclude the chapter with a
review of our design decisions. We explain how our goal to define an algebra with as many
desirable properties as possible led us to choose the design options we did.

8.1 Temporal Extensions of the Snapshot Algebra

In this section we review briefly 10 temporal extensions of the snapshot algebra. We
describe the extensions in terms of the types of objects that each defines and the operations
on object instances that each provides. We also emphasize the choices made for each of the
key design decisions. All these extensions support valid time. Only one, Ben-Zvi's Time
Relational Model [Ben-Zvi 1982], supports both va~sd time and transaction time.

LEGOL 2.0 [Jones et al. 1979] is a language based on the relational model designed
to be used in database applications, such as legislative rules writing and high-level system
specification, in which the temporal ordering of events and the valid times for objects are
important. Objects in the LEGOL 2.0 data model are relation states as in the relational
data model, with one distinction. Tuples in LEGOL 2.0 are assigned two implicit time
attributes, start and stop. The values of these two attributes are the chronons corre-
sponding to the end-points of the interval of existence (i.e., valid time) of the real-world
object or relationship represented by a tuple.

EXAMPLE. Examples in this section show the semantically equivalent representation of
historical state Si from page 25 of Chapter 3 in the algebras reviewed. As in Chapter 3, Si is
a historical state over the signature Student with explicit attributes {snaue, course). The
granularity of time continues to be a semester relative to the Fall semester 1980. Because the
algebras all define relation states differently and, in some cases, require implicit attributes,
we show all examples of relation states in this chapter in tabular form for both clarity and
consistence of notation. Here, Si is a historical state in LEGOL 2.0.
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S1 -ame course start stop

"Phil" "English" 1 1

"Phil" "English" 3 4

"Norman" "English" 1 2

"Norman" "Math" 5 6

Note that two value-equivalent tuples are needed to record Phil's enrollment in English, as
his enronlment was not continuous. C3

Operations in LEGOL 2.0 are not defined formally, although the more important operations
are described using examples. LEGOL 2.0 retains the standard set-theoretic operations and
introduces several time-related operations to handle the temporal dimension of data. The
new time-related operations are time intersection, one-sided time intersection, time union,
time difference, and time-set membership. Time intersection acts as a temporal join, where
the valid time of each output tuple is computed using intersection semantics (i.e., the valid
time of each output tuple is the intersection of the valid times of two overlapping input
tuples). Although the semantics of the other time-related operations is left unspecified,
these operators appear to support a limited form of temporal selection as well as a temporal
join using union semantics (i.e., the valid time of each output tuple is the union of the
valid times of two overlapping input tuples).

The Time Relational Model [Ben-Zvi 1982] supports both valid time and transaction
time. Two types of objects are defined: snapshot relation states, as defined in the snapshot
algebra, and temporal relation states. Temporal relation states are set of tuples, with
each tuple having five implicit time attributes. The attributes effactive-time-start

and offective-time-stop are the end-points of the interval of existence of the real-world
phenomenon being modeled, registration-c ime-start and registration-time-stop
are the end-points of the interval when the tuple is logically a tuple in the relation state,
and deletion-time records the time when erroneously entered tuples are logically deleted.

EXAMPLE. S1 is a temporal relation state in the Time Relational Model on the relation
signature Student with explicit attributes {Sname, course). For completeness, we assume
that the tuples' effective start times were recorded by the transaction corresponding to
transaction number 423 and their effective stop times were recorded by the transaction
corresponding to transaction number 487. We also assume that none of the tuples has yet
to be deleted.
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Si effective effective registration regletratioa deletiou,

801010 course tiffe-start time-stop time-start tie-stop tine

"Phil" "English" 1 1 423 487 -

"Phil" "English" 3 4 423 487 -

"Norman" "English" 1 2 423 487 - I

"Norman" "Math" 5 6 423 487 - 0

A new Time-View operator, TV = (te, ts), is introduced that maps a temporal relation
state onto a snapshot state. The Time -View operator can be thought of as a limitcd form of
temporal selection that selects from the relation's state at transaction time ts those tuples
with a valid time of te. Once the specified tuples are selected, however, the Time -View
operator discards their implicit time attributes to construct a snapshot state.

EXAMPLE. If we let TV = (1, 423), then

TV(Si) = enam course

"Phil" "English"

"Norman" "English"

The semantics of the live relational operators union, difference, join, selection, and projec.
tion is extended to handle both the valid time and the transaction time of tuples directly.
These operators, like the Time-View operator, are all defined in terms of a transaction
time ts and a valid time te. Input tuples are restricted to those tuples in an input rela.
tion's state at transaction time ts having a valid time of re; the valid times of all tuples
that participate in an operation are thus guaranteed to overlap at time t e. Each operator
computes the valid time of its output tuples from the valid times of qualifying tuples in its
input relation states using either union or intersection semantics. For example, the union
operator is defined using union semantics and the join operator is defined using intersection
semantics. The valid time of tuples resulting from the difference operator, however, is left
unspecified.

The Temporal Relational Model [Navathe & Ahmed 1986] allows both non-time-
varying and time-varying attributes, but all of a relation's attributes must be the same
type. Objects are snapshot relation states, whose attributes are all non.-time-varying, and
historical relation states, whose attiibutes are all time-varying. The end-points of the inter-
val of validity of tuples in historical states are recorded in two mandatory time attributes,
time-start and time-end. Hence, the structure of a historical state in the Temporal
Relational Model is the same as that of a historical state in LEGOL 2.0, as shown on
page 208. Value-equivalent tuples, although allowed, are required to be coalesced. The
set theoretic operators are retained and five additional operators on time-varying relation
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states are introduced. The operators Time-Slice, Inner Time. View, and Outer Time. View
an all forms of temporal selection. TCJOIN and TCNJOIN are both join operators de.
fined using intersection semantics. Two other join operators, TJOIN and TNJOIN, are
discussed. They retain the time-stamps of underlying tuples In their resulting tuples but
are, therefore, outside the algebra (the domain of the operators contains objects not defined
by the model).

In Sadeghi's algebra (Sadeghi 1987], objects are historical relation btates. Two implicit
attributes, start and stop, record the end-points of each tuple's interval of validity. Hence,
the structure of a historical state in Sadeghi's algebra is also the same as that of the histor-
ical state in LEGOL 2.0, as shown on page 208. Sadeghi's algebra, like Navathe's Temporal
Relational Model, allows value-equivalent tuples and requires that value-equivalent tuples
be coalesced. Historical versions of the snapshot operators union, difference, carteslla
product, selection, projection, and join are defined. Both cartesian product and join are
defined using intersection semantics. A new operator, WHEN, is introduced. It maps a
historical relation state onto the intervals that are the time-stamps of tuples in the relation
state. Whether the result of this operation is another type of object or a historical state
without explicit attributes is unclear.

Sarda's algebra [Sarda 1988] is another historical algebra that associates valid time
with tuples. Objects can be either snapshot or historical relation states. Unlike the algebras
mentioned previously, Sarda's algebra represents valid time in a historical relation as a
single, non-atomic, implicit attribute named period.

EXAMPLE. Si is a historical relation state in Sarda's algebra on the relation signature
Student with explicit attributes {sname, course).

S1 = Sname course period

"Phil" "English" 1 ... 2

"Phil" "English" 3 ... 5

"Norman" "English" 1... 3

"Norman" "Math" 5... 7

Also unlike the other algebras, a tuple in Sarda's algebra isn't considered valid at its right-
most boundary point. Hence, the first tuple signifies that Phil was enrolled in English
during the Fall semester 1980, but not during the Spring semester 1981. 0

Sarda's algebra retains the basic semantics of some of the set theoretic operators, extends
the definition of one operator to handle valid time directly, and introduces several new
operators. Projection and cartesian product are defined to treat the implicit attribute
period the same as they would an explicit attribute. Projection maps a historical state
onto either a snapshot or a historical state, depending on whether the implicit attribute
period is a projection attribute. Similarly, cartesian product simply combines tuples from
two historical states, without discarding or changing their time-stamps. Hence, the re-
sult of a cartesian product isn't a historical state but a snapshot state with two non-
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atomic attributea. The semantlcs of the select operator, however, is extended to allow for
both temporal, as well es, non-temporal predicates. Whether the algebra retains the set
theoretic semantics of union and difference is left unspecified. EXPAND, CONTRACT,
PROJECT-AND. WIDEN, and CONCURRENT PRODUCT are the new operators. EX.
PAND produces, for each chronon in the time-stamp of each tuple in a historical state, a
value-equivalent tuple with that chronon as its time-stamp. CONTRACT, the inverse of
EXPAND, coalesces value-equivalent tuplea. PROJECT-AND- WIDEN is a form of tem-
poral projection that coalesces value-equivalent tuples and CONCURRENT PRODUCT Is
cartesian product defined using hitersection senauntics.

Unlike the algebras discussed above, the Temporal Relational Algobra (Lorentuos &
Johnson 1987A] associates time-stamps with individual attributes rather than with tuples.
Although a time-stamp Is normally associated withk all the attributes in a tuple, a time.
stamp may be associated with any non-empty subset of attributes in a tuple. Furthermore,
no implicit or mandatory time-stamp attributes are assumed. Time-stamps are simply
explicit, numeric-valued attributes. They represent either the chronon during which one or
more attribute values are valid or a boundary point of the interval of validity for one cr more
attribute values. Several time-stamp attributes may also be used together to represent a
chronon of nested granularity.

EXAMPLES. Fir3t, let Si be a historical relation state in the Temporal Relational Alge-
bra on the relation signg.ture Student with attributes {sname, n-start, n-stop, course,
c-start, c-stop}. Unlike the other algebras, the time-stamp attributes appear as ex-
plicit attributes in the relation signature. Here we assume that the attributes n-start and
n-stop represent the boundary points of the interval of validity for the attribute mname
and the attributes c.start and c-stop represent the boundaay points of the interval of
validity for the attribute course. Note, however, that we could have specified the same
time-stamp attributes for both snams and course in this example.

S1 = sname n-start n-etop course c-start c-stop

"Phil" 1 2 "English" 1 2
"Phil" 3 5 "English" 3 5
"Norman" 1 3 "English" 1 3
"Norman" 5 7 "Math" 5 7

A time-stamp in the Temporal Relational Algebra, like one in Sarda's algebra, doesn't
include its right-most boundary point.

Now let R, be a historical relation state in the Temporal Relational Algebra on the rela-
tion signature Student with attributes {sname, course, semester-start, semester-stop,
veek-s•azrt, week-istopi, where all four time-stamp attributes are associated with both
srame and course. Assume that the granularity for the time-stamp attributes week-start
and week-stop is a week relative to the first week of a semester.
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R1 = same course semester-st•zt senester-stop week-start week-stop

"Phil" "English" 1 2 1 9

"Phil" "English" 3 5 1 17

"Norman" "English" 1 3 1 9

"Norman" "Math" 5 7 9 17

In this example, we specify the weeks during a semester when a student was enrolled in a
course. For example, Phil was enrolled in English during the Fall semester 1980 for only
the first 8 weeks of the semester. Note that the meaning of the weak-start and week-stop
attributes is relative to the eeateser-s1tart and semester-stop attributes. '3

The standard set-theoretic operations are retained in the Temporal Ralational Algebra
unchanged. Although no new time-oriented operations are introduced, three new operators,
EXTEND, UNFOLD, and FOLD, which are defined in terms of the conventional relational
operators, are introduced. These operators allow conversion between relation states whose
tuples contain two time-stamp attributes representing the end-points of the interval of
validity of one or more attributes to equivalent relation states whose tuples contain a single
time-stamp attribute representing a chronon during which the same attributes are valid.
Relation states whose tuples contain only time-stamp attributes representing the end-points
of intervals of validity are considered to be folded while relation states whose tuples contain
only time-stamp attributes representing individual chronons of validity are considered to
be unfolded. Relation states S1 and R1 in the above examples are folded.

EXAMPLE. Let R2 be an equivalent representation of Rt1 in which the two time-stamp
attributes semester-start and semester-stop have been unfolded onto a single time-
stamp attribute semeater.

R2 = hanme course semester week-start week-stop

"Phil" "English" 1 1 9

"Phil" "English" 3 1 17

"Phil" "English" 4 1 17

"Norman" "English" 1 1 9

"Norman" "English" 2 1 9

"Norman" "Math" 5 9 17

"Norman" "Math" 6 9 17

We could now apply UNFOLD once more to unfold the attribute week-start and and the
attribute week-stop onto a single time-stamp attribute week. The resulting relation would
have 72 tuples. 03

The Historical Relational Data Model [Clifford & Croker 1987] allows two types of
objects: a set of chronons, termed a lifeapan, and a historical relation state, where each
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attribute in the relation scheme and each tuple in the relation state is assigned a lifespan. A
relation scheme in the Historical Relational Data Model is an ordered four-tuple containing
a set of attributes, a set of key attributes, a function that maps attributes to their lifespans,
and a function that maps attributes to their value domains. A tuple Is an ordered pair
containing the tuple's value and its lifespan. Attributes are not atomic-valued; rather, an
attribute's value In a given tuple is a partial function from the domain of chronons onto
the attribute's value domain, defined for the attribute's valid time (i.e., the irtersection of
the attribute and tuple lifespans). Relations have key attributes and no two tuples In a
relation state are allowed to match on the values of the key attributes at the same chronon.

EXAMPLE. S, is a historical relation in the Historical Relational Data Model on the
relation signature Student, wherm {(anae --- {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, course - {1, 2,
3, 4, 5, 6, 7, 8, 9, 10}) is the function assigning lifespans to attributes.

S1 = Tuple Value Tuple Lifespan

8name course
1 - "Phil" 1 -- "English" {1, 3, 4)

3 -- "Phil" 3 - "English"

4 -- "Phil" 4 -- "English"
1 - "Norman" 1 -I "English" (1, 2, 5, 61

2 -, "Norman" 2 - "English"

5 -- "Norman" 5 --, "Math"

6 -- "Norman" 6 -- "Math"

Because tuple lifespans are sets and because both Phil and Norman were never enrolled
in more than one course at the same time, we are able to record each of their enrollment
histories in a single tuple. If one had been enrolled in two or more courses at the same
time, however, his total enrollment history could not have been recorded in a single tuple as
attribute values are functions from a lifespan onto a value domain. Note also that we have
chosen the most straightforward representation for an attribute whose value is a function.
Because attribute values in both Clifford's algebra and Gadia's algebras, which we describe
next, are functions, they have an arbitrary number of other physical representations. o3
The semantics of the relational operators union, difference, intersection, projection, and
cartesian product is extended to handle lifespans directly. For example, the lifespan of
each tuple output by cartesian product is the union of the lifespans of the two tuples in
the input relation states that contribute to the output tuple. A null value is assigned to an
attribute in the output tuple for each chronon that is in the lifespan of the output tuple
but not in the lifespan of the input tuple associated with that attribute. Also, temporal
versions of 9-join, equi-join, and natural join are defined using intersection semantics and
several new time-oriented operations are introduced. WHEN maps a relation state onto its
lifespan, where the lifespan of a relation state is defined to be the union of the lifespans of
its tuples (e.g., {1, 2, 3, 4, 5, 6) in the above example). SELECT-IF is a form of temporal
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selection that selects tuples that are both valid and satisfy a given selection criterion at a
specified time and TIME.SLICE is a form of temporal projection that restricts the tuple
lifespans of its resulting tuples to some portion of their original lifespans. The operator
SELECT-WHEN possesses features of both temporal selection and temporal projection;
it is a variant of SELECT-IF that restricts the tuple Ufespans of its resulting tuples to
the times when they satisfy the selection condition. Finally, a TIME-JOIN operator is
defined that restricts the tuple lifespans of its resulting tuples to the value of a time-valued
attribute.

Gadia's homogeneous model [Gadia 1988) also allows two types of objects: temporal
elements and historical relation states. A temporal element is a finite union of disjoint
intervals (effectively a set of chronons) and attribute values are functions from temporal
elements onto attribute value domains. The model requires that all attribute values in a
given tuple be functions on the same temporal element. This property, termed homogeneity,
ensures that a snapshot of a historical relation state at time t always produces a conventional
snapshot state without nulls.

EXAMPLE. S1 is a historical relation state in Gadia's homogeneous model over the signa-
ture Student with attributes {sname, course).

St = enme course

[1, 2) U [3, 5) -- "Phil" (1, 2) U [3, 5) -- "English"

[1, 3) U [5, 7) -- "Norman" [1, 3) -- "English"

[5, 7) - "Math"

Here the interval [t1, t2) is the set of chronons {t 1 , . -. , t2 - 1}. Again, we are able to record
the enrollment histories of Phil and Norman in single tuples only because they were never
enrolled in more than one course at the same time. 03

A historical version of each of the five basic conventional relational operators is de-
fined using snapshot semantics. For each historical operator, the snapshot of its resulting
historical relation state at time t is required to equal the result obtained by applying the
historical operator's relational counterpart to the snapshot of the underlying historical re-
lation states at time t. Two new operators are also introduced. One, tdom, maps either a
tuple or a relation state onto its temporal domain, where the temporal domain of a tuple
is its temporal element and the temporal domain of a relation state is the union of its
tuples' temporal elements. For example, the temporal domain of S, above is [1, 7). The
other operator, termed temporal selection, is a limited form of both temporal selection and
temporal projection; it selects from a relation state those tuples whose temporal elements
overlap a specified temporal element and restricts attribute values in the resulting tuples
to the intersection of their temporal elements and the specified temporal element.

Gadia's multihomogeneous model (Gadia 1986] and Gadia's and Yeung's heteroge-
neous models [Gadia & Yeung 1988, Yeung 1986] are all exten3ion3 of the homogeneous
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model. They lift the restriction that all attribute values in a tuple be functions on the
same temporal element. We consider here only the latest (Gadia & Yeung 1988] of these
extensions. Temporal elements may be multi-dimensional to model different aspects of time
(e.g., valid time and transaction time). Attribute values are still functions from temporal
elements onto attribute value domains, but attribute values need not be functions on the
same temporal element. Relations are assumed to have key attributes, with the restriction
that the range of the function assigned to each key attribute in a tuple be a single element of
the attribute's value domain. Also, no two tuples may match on the ranges of the functions
assigned to the key attributes. Hence, in the previous example, the attribute sname would
qualify as a key attribute in the heterogeneous model. The semantics of union, cartesian
product, selection, projection, and join are extended to account for temporally heteroge-
neous attribute values. Also, temporal variants of selection and join are introduced. The
semantics of difference and intersection, however, are left unspecified.

Tansel's historical algebra [Tansel 1986] allows only one type of object: 'the historical
relation state. However, four types of attributes are supported, the attributes of a relation
need not be the same type, and attribute values in a given tuple need not be homogeneous.
Attributes may be either non-time-varying or time-varying and they may be either atomic-
valued or set-valued. The value of a time-varying, atomic-valued attribute is represented as
a triplet containing an element from the attribute's value domain and the boundary points
of its interval of existence while the value of a time-varying, set-valued attribute is simply
a set of such triplets.

EXAMPLE. S1 is a historical relation state in Tansel's algebra over the relation signature
Student with attributes {sname, course), where snare is a non-time-varying, atomic-
valued attribute and course is a time-varying, set-valued attribute.

S1 = aname course

"Phil" { ((1, 2), "English"),

([3, 5), "English") }
"Norman" Q ([1, 3), "English")

__-__ ([5, 7), "Math") )

Because Tansel doesn't define time-varying attributes as functions, the enrollment history
of a student can be recorded in a single tuple, even if the student was enrolled in two
or more courses at some time. Note, however, that each interval of enrollment, even for
the same course, must be recorded as a separate element of a time-varying, set-valued

attribute. r

The conventional relational operators are extended to account for the temporal di-
mension of data and several new time-related operations are introduced. PACK combines
tuples whose attribute values differ for a specified attribute but are otherwise equal. Con-
versely, UNPACK replicates a tuple for each element in one of its set-valued attributes.
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T-DEC decomposes a time-varying, atomic-valued attribute in a historical relation state
into three non-time-varying, atomic-valued attributes, representing the three components
of the time-varying, atomic-valued attribute. Conversely, T-FORM combines three non-
time-varying, atomic-valued attributes, representing a value and the boundary points of
the value's interval of validity Into a single time-varying, atomic-valued attribute. DROP-
TIME discards the time components of a time-varying attribute. Finally, SLICE, USLICE,
and DSLICE, are limited forms of temporal projection in which the time-stamp of a time-
varying attribute is recomputed as the intersection, union, and difference, respectively, of
its original time-stamp and the time-stamp of another specified attribute. If the recom-
puted time-stamp is empty, the tuple is discarded. Tansel also introduces a new operation,
termed enumeration, to support aggregation (Tansel 1987]. The enumeration operator de-
rives, for a set of chronons or intervals and a historical state, a table of data to which
aggregate operators (e.g., count, avg, min) can be applied.

EXAMPLES. Let R, be the historical relation state, resulting from the unpacking of at-
tribute course of S, in the previous example, over the relation signature Student with
attributes {sname, course), where sname is a non-time-varying, atomic-valued attribute

and course is a time-varying, atomic-valued attribute.

R1 8nmme course

"Phil" ([1, 2), "English")

"Phil" ([3, 5), "English")

"Norman" ([1, 3), "English")

"Norman" ([5, 7), "Math" )

Now, let R2 be the historical relation state, resulting from the decomposition (T-DEC)
of attribute course of relation R1, over the relation signature Student with attributes
{ na,1e, course, courseL, coursei), where sname, course, courseL, and courseu are all
non-time-varying, atomic-valued attributes.

R2 = same course courseL courseu

"Phil" "English" 1 2

"Phil" "English" 3 5

"Norman" "English" 1 3

"Norman" "Math" 5 7

Table 8.1 and Table 8.2 are a summary of the features of the 10 algebras described
above and the algebra defined in the previous chapters of this dissertation. These tables
show the range of solutions chosen by the developers of the algebras to the first five design
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TIME-STAMP REPRESENTATION

interval
single chronon (two chronons) set of chronons

Jones

Time-stamped Ben-Zvi Sarda Clifford & Croker

Tuples Navathe & Ahmed

Sadeghi

Clifford & Croker

Time-stamped Lorentzos & Johnson Tansel Gadia

Attributes Gadia & Yeung

McKenzie

Table 8.1: Representation of Time in the Algebras

decisions from page 206. The sixth design decision is not included as only Ben-Zvi's, Ga-
dia's and Yeung's, and our algebras support transaction time. Gadia and Yeung associate
transaction time with attribute values, Ben-Zvi associates transaction time with tuples,
and we associate transaction time with relation states. Because several of the algebras
have similar names and others are unnamed, we use the names of the developers to refer
to the algebras hereafter for clarity. Table 8.1 categorizes the algebras according to their
representation of valid time. Note that Clifford's algebra appears twice in Table 8.1 as it
associates time-stamps with attributes in a relation scheme as well as tuples in a relation
state (i.e., the tuple's lifespan). Table 8.2 describes other basic features of the types of ob-
jects defined and operations allowed in the algebras. The second column lists object types
and the third column describes the structure of attributes. The fourth column indicates
whether the algebras retain the set-theoretic semantics of the five basic relational operators
or extend the operators to deal with time directly. The fifth column lists new operators
introduced specifically to handle the temporal dimension of the phenomena being modeled.

In the next section we discuss a set of criteria for evaluating temporal extensions of the
snapshot algebra. Then, in Section 8.5, we evaluate these 11 algebras against the criteria.

8.2 Criteria

Although several historical and temporal algebras have been proposed, previous research
has not focused on defining criteria for evaluating the relative merit of these algebras. Only
Clifford presents a list of specific properties desirable of a temporal extension of the snapshot
algebra [Clifford & Tansel 1985]. He identifies five fundamental, conceptual goals, which
will be discussed in detail shortly. These goals alone are insufficient to evaluate the relative
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Standard New
Algebra Objects Attributes Operations Operations

Jones historical states atomic-valued retained time intersection,

one-sided
.time intersection,

time union,
time difference,
time-set membership

Ben-Zvi snapshot states, atomic-valued extended Time -View
temporal states

Navathe & snapshot states, atomic-valued retained Time -Slice,
Ahmed historical states Inner Time -View,

Outer Time-View,
TCJOIN, TCNJOIN

Sadeghi historical states atomic-valued extended Time Join,
When

Sarda snapshot states atomic-valued some Expand,

historical states and retained Contract,
non-atomic- others Project- And-Widen,

valued extended Concurrent Product
Lorentzos & snapshot states atomic-valued retained Extend, Fold, Unfold

Johnson
Clifford & lifespaus, functional extended When, Select -If,

Croker historical states Select -When,

Time -Slice,
_____Time -Join
Gadia temporal elements, functional snapshot tdom,

historical states semantics Temporal Selection
Gadia & temporal states functional extended Temporal Selection,
Yeung Temporal Join
Tansel historical states atomic-valued extended Pack, Unpack,

set-atomic- T-Dec, T-Form,
valued Drop -Time,

triplet-valued Slice, Uslice, Dslice,
set-triplet- Enumeration

valued

McKenzie snapshot states, ordered pairs extended Temporal Derivation
historical states Temporal

Aggregation

Table 8.2: Objects and Operations in the Algebras
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merit of the proposed algebras. A more comprehensive set of specific, objective criteria is
needed. In this section, we identify 29 such criteria for evaluating temporal extensions of
the snapshot algebra. First, we introduce the criteria. With each criterion, we indicate its
source, if relevant. Next, we discuss our reasons for not including as criteria several other
properties of historical and temporal algebras. Then, we examine incompatibilities among
the criteria.

For clarity, we continue our convention of representing a historical operator as dp to
distinguish it from its snapshot algebra counterpart op.

Table 8.3 is an alphabetical listing of criteria for evaluating temporal extensions of the
snapshot algebra. Included in this list are algebraic properties that have been advocated
by others as well as those properties that seem reasonable to us. The list is restricted to
only those properties that are well-defined, have an objective basis for being evaluated, and
are arguably beneficial. No algebra can have all these properties as certain subsets of the
properties are incompatible. An algebra can, however, have a maximal subset of properties
from Table 8.3 that are compatible.

AVl attributes in a tuple are defined for the same interval(s) (Gadia 1986]. This re-
quirement, termed homogeneity by Gadia, assumes that valid time is associated with at-
tributes, rather than tuples, and that attributes are set-valued, rather than atomic-valued.
Although attributes may change value at different times (i.e., asynchronous attributes), all
attributes in a tuple must be defined for the same interval(s). Requiring that all attributes
in a tuple be defined for the same interval(s) simplifies definition of the algebra. Operators
need not be redefined to handle valid time directly. Rather, the algebra can be defined in
terms of the conventional relational operators using snapshot semantics, even if set-valued
attributes are allowed. Also, problems that arise when disjoint attribute time-stamps are
allowed (e.g., how to handle non-empty time-stamps for some, but not all, attributes) need
not be considered.

Consistent extension of the snapshot algebra [Clifford & Tansel 1985]. The expressive
power of the algebra should subsume that of the snapshot algebra. The algebra should be
at least as powerful as the snapshot algebra. Any relation or algebraic expression that can
be represented in the snapshot model should have a counterpart in the temporal model.
Thus the algebra should provide, as a minimum, a historical counterpart for each of the five
operators that serve to define the snapshot algebra: union, difference, cartesian product,
projection, and selection [Ullman 1982]. Furthermore, the historical relation state resulting
from the application of one of these snapshot operators to a snapshot relation state and
conversion of the resulting state to its historical counterpart should be equivalent to the
historical relation state resulting from application of the snapshot operator's historical
counterpart to the snapshot state's historical counterpart. If we assume that the function
Transform transforms a snapshot state into its historical counterpart, then Figure 8.1
illustrates this equivalence proof.

Data periodicity is supported [Anderson 1982, Lorentzos & Johnson 1987A]. Periodic-
ity is a property of many real-world phenomena. Rather than occurring just once in time
or at randomly spaced times, these phenomena recur at regular intervals over a specific
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* All attributes in a tuple are defined for the same interval(s)
9 Consistent extension of the snapshot algebra
e Data periodicity is supported
* Each collection of valid attribute values is a valid tuple
* Each set of valid tuples is a valid relation state
* Formal semantics is specified
9 Has the expressive power of a temporal calculus
a Historical data loss is not an operator side-effect
e Implementation exists
* Includes aggregates
* Incremental semantics defined
* Intersection, G-join, natural join, and quotient are defined
* Is, in fact, an algebra

* Model doesn't require null attribute values
e Multi-dimensional time-stamps are supported
9 Optimization strategies are available

* Reduces to the snapshot algebra
* Restricts relation states to first-normal form
* Supports a three-dimensional visualization of historical states and operations
* Supports basic algebraic equivalences:

QOR- ROQ

&F (42F (R)) E 'Fp2(&F1(R))
QO(ROS) M (QCJR)OS
Qk(RaS) = (QýR)(S
Q (ROS) - (Q*R) .(Qk$S)

&F(Q R) - O'F(Q) 0 &F(R)
&F(Q R) M &F(Q) - &F(R)
* x(Q CR) =- *x(Q) 0 *x(R)
Q 0 R Q- QZ(Q-R)

• Supports relations of all four classes
e Supports scheme evolution
* Supports static attributea
e Supports rollback operations
* Treats valid time and transaction time orthogonally

* Tuples, not attributes, are time-stamped
* Unique representation for each historical relation state
* Unisorted (not multisorted)
* Update semantics is specified

Table 8.3: Criteria for Evaluating Temporal Extensions of the Snapshot Algebra
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Figure 8.1: Outline of Equivalence Proof

interval in time. For example, a person may have worked from 8:00 a.m. until 5:00 p.m.
each day, Monday through Friday, for a particular month. Ideally, a temporal data model
should be able to represent such periodic phenomena without having to specify the time of
each of their occurrences.

Each collection of valid attribute values is a valid tuple. In the snapshot model, the
value of an attribute is independent of the value of other attributes in a tuple, except for key
and functional dependency constraints. The same should be true of the temporal model.
If we extend the snapshot model so that valid time is assigned to each attribute, we should
extend the concept of attribute independence to include the valid-time component of the
attribute as well as the value component of the attribute. Within a tuple, tile value or
valid-time component of one attribute shouldn't restrict arbitrarily the value or valid-time
component of another attribute. Limiting valid tuples to some subset of the tuples that
could be formed from valid attribute values adds a degree of complexity to the temporal
model not found in the snapshot model.

Each set of valid tuples is a valid relation state. In the snapshot model, every set of
tuples that satisfies value domain, key, and functional dependency constraints is a valid
relation state. The same should be true of the temporal model. Imposing additional inter-
tuple constraints, which further restrict the set of valid relation states, adds another degree
of complexity to the temporal model not found in the snapshot model.
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Formal semantics is specified. Concise, mathematical definitions for all object types
and operations are needed. Without such definitions, the meaning of algebraic operations
is unclear. Also, evaluation of the algebra is impossible.

Has the ezpressive power of a temporaml calculus [Gadia 1986]. There should exist a
temporal calculus whose expressive power is subsumed by that of the algebra. Calculus-
based temporal query languages then can be developed for which the algebra can serve as
the underlying evaluation mechanism.

Historical data lossq is not an operator side-effect. Historical data are lost if an operator
removes valld-time information, contained in underlying relation states, from its resulting
relation state. Data loss becomes an operator side-effect if the removal of that valid-time
information is not the purpose of the operator. For example, suppose a historical algebra
allows attribute time-stamping but requires closure under Gadia's homogeneous restriction
(i.e., the valid times associated with each attribute value in a tuple must be identical).
To ensure closure under cartesian product, assume that cartesian product is defined using
intersection semantics. Now consider the cartesian product of two historical relation states
with attribute time-stamping, relation state A defined over the relation signature Student
with attributes {sname, course), and relation state B defined over the relation signature
Homue with attributes {hnamo, state).

A = sname course

"Phil" , {1, 3, 4) ( "English", (1, 3, 4))

B -- hae j sao
( "Phil", {1, 2, 3) "Kansas", {1, 2, 3}

A B = sname course hname state

"("Phil", {1, 3)) ( "English", {1, 3)) ( "Phil", {1, 3) ("Kansas", (1, 3)

Note the loss of valid-time information associated with Phil's enrollment in English at time
4 and his residency in Kansas at time 2. Algebras that allow such loss of histomical data as
an operator side-effect cannot support historical queries. If the algebra supports historical
queries, the algebra must not allow loss of historical data as an operator side-effect; all
valid-time information input to an operator must be preserved in the operator's output
unless the operation being performed (e.g., difference, intersection) dictates removal.

Implementation exists. Semantic deficiencies, inconsistencies, and inefficiencies are
often revealed during implementation. Therefore, it is desirable that the algebra have been
implemented.
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Includes aggregates. The temporal model should provide formal semantics for histor-
ical versions of standard aggregate (e.g., sum, count, min, max) operations.

Incremental semantics defined. Studies have shown that It may be more effcicfvrt to
implement some recurring snapshot queries as incrementally maintained materialized views
rather than recomputing the queries each time they are asked [Hanson 1987A, f1%nson
1988, Roussopoulos 1987]. Because this strategy likely will be applicable to an even larger
subclass of historical queries (cf., Chapter 6), an incremental version of the algebra is
needed if incremental maintenance of materialized views Is to be supported.

Intersection, e-join, natural join, and quotient are defined. In the snapshot algebra,
intersection, G-join, natural join, and quotient are defined In terms of the difference, se-
lection, projection, and cartesian product operators [Ullman 1982]. In a historical algebra,
analogous definitions may, but need not, hold. For example, if the historical versions of
the basic operators don't retain the properties of their snapshot counterparts (e.g., satisfy
algebraic equivalences), it may not be possible to define historical versions of Intersection,
0-join, natural join, and quotient exactly as they are defined in the snapshot algebra.
Hence, formal definitions of these operators should be given.

Is, in fact, an algebra (Clifford & Tansel 1985]. This criterion is fundamental. Any
algebra should define the types of objects supported and the allowable operations on object
instances of each defined type. In addition, all legal operations should be closed.

Model doesn't require null attribute values. Restriction of attribute values to non-null
values is consistent with the snapshot model and greatly simplifies the semantics of the
algebra.

Multi-dimensional time-stamps are supported [Gadia & Yeung 1988]. It may be desir-
able to associated more than one aspect of time with an object or relatioisship being mod-
eled. Because valid time, in particular, is a multifaceted aspect of time (c.f., Section 1.3 °2),
time-stamps of a single dimension may be inadequate for recording time in temporal data,
bases. Hence, a temporal data model should support multi-dimensional time-stamps. Note
that this criterion differs from the eariier one concerning periodicity. Satisfaction of the
periodicity criterion only requires that the algebra support structured time-stamps that
record a single aspect of time.

Optimization strategies are available. Except for semantics, implementation efficiency
is the most important feature of an algebra. If an algebra cannot be implemented efficiently,
it will have no practical application for the development of temporal query languages.
Strategies for simplification of algebraic expressions corresponding to queries should be
available. Note that the availability of basic algebraic equivalences already provides alge-
braic transfo-mation optimizations.
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Figure 8.2: Outline of Reduction Proof

Reduces to the snapshot algebra [Snodgrass 1987]. The semantics of the algebra should
be consistent with the intuitive view of a snapshot relation state as a two-dimensional
slice of a three-dimensional historical relation state at a time t. Hence, for all historical
operators, the snapshot state obtained by applying a historical operator to a historical
state and then taking a snapshot should be equivalent to the relation state obtained by
taking a snapshot of the historical state and applying the analogous relational operator to
the resulting snapshot state. Figure 8.2 illustrates this reduction proof.

Reatricis relation states to first-normal form. The snapshot algebra owes much of its
simplicity to the restrictiou of relation states to first-normal form. Any extension of the
snapshot algebra should retain this property.

Supports a three-dimensional conceptual visualization of historical states and opera-
tions [Ariav 1986, Ariav & Clifford 1986, Brooks 1956, Clifford & Tansel 1985]. Brooks was
the first to propose that database relations recording changes to real-world objects over time
be visualized conceptually as three-dimensional objects. Almost all proposals for extending
the snapshot model to incorporate valid time are consistent with this "spatial metaphor"
[Clifford & Tansel 1985], representing historical relation states as three-dimensional objects,
whose third dimension is valid time. Although these spatial objects aren't true cubes, they
do possess geometric properties similar to those of cubes. For example, consider the his-
torical state SI over the relation signature Student with attributes {sname, course) and
attribute time-stamping.
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Figure 8.3: Historical Relation

S1 " enale course

("Phil", {1, 3, 4} ) ( "English", {1, 3, 4})

"( "Norman", {1, 2}) ( "English", (1, 21)

( "Norman", {5, 6)) ( "Math", {5, 6) )

Figure 8.3 is a graphical representation of this relation. Clearly, this representation of S,
can be viewed as a three-dimensional object with geometric properties similar to that of a
cube.

If we accept this three-dimensional representation as a high-level, user-oriented model
of historical relation states, then each operation defined on historical relation states should
have an interpretation, consistent with its semantics, in accordance with this conceptual
framework. The definitions of operations should be consistent with the conceptual visu-
alization that these operations manipulate spatial objects. For example, the difference
operator should take two spatial objects (i.e., historical relation states) and produces a
third spatial object that represents the volume (i.e., historical information) present in the
first spatial object but not present in the second spatial object. Likewise, the cartesian
product operator should take two spatial objects and produce a third spatial object such
that each unit of volume (i.e., historical tuple) in the first spatial object is concatenated
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with a unit of volume In the second spatial object to form a unit of volume in a third spatial
object. This description of operations on historical relation states as "volume" operations
on spatial objects is consistent not only with the conceptual visualization of historical re-
lation states as three-dimensional objects but also with the semantics of the individual
snapshot algebraic operations as "area" operations on two-dimensional tables, extended to
account for the additional dimension represented by valid time.

Supports basic algebraic equivalences. The following commutative, associative, and
distributive equivalences, which hold for and in some sense define the snapshot operators,
should also hold for their historical counterparts.

QOR E ROQ
QiR is RýQ

QO(RCJS) N (QCOR)OS

Qk(RRS) M (QkR)kS

Qk(RCiS) is (QkR)O(QkS)

eF(Q R R) faF(Q) O bF(R)

&F(Q-" R) -F(Q) - &F(R)

*x(Q R) M *x (Q)O *x(R)

QOiR = Q-(Q..R)

Included in this list are the commutative, associative, and distributive equivalences in-
volving only union, difference, and cartesian product in set theory [Enderton 1977]. Also
included in this list are the non-conditional commutative laws involving selection and pro-
jection presented by Ullman [Ullman 1982]. Finally, the definition of the intersection oper-
ator in terms of the difference operator, which holds for the snapshot algebra, should also
hold.

Supports relations of all four classes (Snodgrass & Ahn 1985, Snodgrass & Ahn 1986].
As we saw in Chapter 1, relations may be classified, depending on their support for valid
time and transaction time, as either snapshot, rollback, historical, or temporal relations.
Any temporal extension of the snapshot algebra that supports both valid time and trans-
action time should allow for relations of all four classes.

Supports scheme evolution [Ben-Zvi 1982]. Because a relation's structure, as well as
its contents, can change over time, a model of transaction time needs to support scheme
evolution, as well as contents evolution.

Supports static attributes [Clifford & Tansel 1985, Navathe & Ahmed 1986]. The
algebra should allow for attributes whose role in a tuple is not restricted by time. This
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feature allows the temporal model to be applied to environments in which the values of
certain attributes in a tuple are time-dependent while the values of other attributes in the
tuple are not time-dependent.

Supports rollback operations [Ben.Zvi 1982, Snodgrass 1987]. In many database ap-
plications, there is a need to sometimes pose queries in the context of past database states.
Hence, the algebra should allow relations to be rolled back to past states for query eval-
uation. The algebra should allow a query unrestricted access to tuples in past database
states. Also, the algebra should allow a query access to multiple database states, rather
than access to a single database state.

Treats valid time and transaction time orthogonally [Snodgraas & Ahn 1985, Snodgrass
& Ahn 1986]. Valid time and transaction time are orthogonal aspects of time. Valid time
concerns the time when events occur, and relationships exist, in the real world. Transaction
time, on the other hand, concerns the time when a record of these events and relationships
is stored in a database. Because the two aspects of time are orthogonal, their treatment
also should be orthogonal. The valid time assigned to an object in the database shouldn't
be restricted by or determined by the transaction time assigned that object. The algebra
should allow both retroactive and postactive changes to be recorded. Also, operations
involving one aspect of time shouldn't affect arbitrarily the other aspect of time.

Tuples, not attributes, are time-.stamped. Time-stamping tuples, rather than at-
tributes, simplifies the semantics of the algebra. Operators need not be defined to handle
disjoint attribute time-stamps but rather can be defined in terms of the conventional rela-
tional operators using snapshot semantics.

Unique representation for each historical relation state. In the snapshot model, there
is a unique representation for each valid snapshot relation state. Likewise, there should
be a unique representation for each valid historical relation state. Failure of an algebra to
satisfy this criterion can complicate the semantics of the operators, require inefficient im-
plementations, and possibly restrict the class of database retrievals that can be supported.
For example, consider the following relation states on the relatiun signature Student with
attributes funame, course} and attribute time-stamping.

A = amime course

( "Phil", {1, 2)) ("English", {1, 21)

( "Phil", {3, 4)) ( "English", {3, 4})

B = snme course

"( "Phil", (1, 2, 3, 4}) ( "English", {1, 2, 3, 4))
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C = Omame course

( "Phil", f5, 6) ) ( "English", (5, 6} )

D = sname course

"( "Phil", {2, 3)t ( "English", {2, 3))

Clearly, the Information content of states A and B Is identical; the information content of
state C is a continuation of the information in both A and B; and the information content
of state D is a subset of that contained in both A and B. However, what is the semantics
of A U C? Does the output relation state contain three tuples, two tuples, or just one
tuple? Similarly, what is the semantics of A u D? Is the single tuple in D represented in the
output relation state or is it absorbed by the two tuples in A? Also, if we want to retrieve
the name of all students who were enrolled in English from time 2 to time 4, do we get
the same result if we apply this query to relations A and B? Retrieval of "Phil," which
is the Intuitively correct result when applying this query to A, requires tuple selection
based on information contained in more than one tuple, a significant departure from the
semantics of the selection operation in the snapshot algebra. Thus, a selection operator
with significantly more complicated semantics would be required to produce results that
are correct intuitively. Moreover, the implementation of such a selection operator may be
impractical because of the many cases that would have to be considered during the selection
process.

Unuorted (not multisorted). In the snapshot algebra, all operators take as input and
provide as output a single type of object, the snapshot relation state. If possible, a temporal
extension of the snapshot algebra should also be unisorted. A multisorted algebra would
introduce a degree of complexity in the temporal model not found in the snapshot model.

Update Semantica ia specified [Snodgrass 1987]. Concise, mathematical definitions for
all update operations allowed on a relation's scheme as well as its contents are needed.
Without such definitions, the meaning of update operations such as tuple insertion and
tuple deletion is unclear.

8.3 Properties not Included as Criteria

The following properties are either subsumed by properties in Table 8.3, are not well.
defined, or have no objective basis for being evaluated. Hence, they are not included as
criteria.

Disallows tuple8 with duplicate attribute values. If attributes are time-stamped, then
this requirement is subsumed by the criterion that the algebra have a unique representation
for each historical relation state. There would be many different equivalent representations
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for most historical states If tuples with duplicate attribute values were allowed. For ex.
ample, the following are only two of several equivalent representations of a historical state
A over the relation signature Home with attributes {hnaae, state) and attribute time-
stamping.

A = ame state

"( "Norman", (1, 2, 5, 6)) ( "Utah", {1, 2, 5, 61)

A = hname state

"( "Norman", (1, 2)) ("Utah", (1, 2)

"("Norman", {5, 6) ("Utah", (5, 6} )

Homogeneous tuples are valid tuplea. This requirement is subsumed by the require-
ment that the algebra support non-homogeneous relations.

Supports historical queries (valid time) [Snodgrass 1987]. An algebra supports histor-
ical queries if information valid over a chronon can be derived from information in under-
lying relation states valid over other chronons, much as the snapshot algebra allows for the
derivation of information about entities or relationships from information in underlying re-
lation states about other entities or relationships, Satisfaction of this criterion implies that
the algebra allows units of related information, possibly valid over disjoint chronons, to be
combined into a single related unit of information possibly valid over some other chronon.
Support for such a capability requires the presence, in the algebra, of a cartesian product
or join operator that concatenates tuples, independent of their valid times, and preserves,
in the resulting tuple, the valid-time information for each of the underlying tuples. Hence,
this requirement is subsumed by the criteria that the algebra be a consistent extension of
the snapshot algebra and historical data loss not be an operator side-effect.

Supports non-homogeneous relations [Gadia 1986]. If the algebra is closed and sup-
ports historical queries, it must support non-homogeneous relation states (i.e., relation
states having tuples whose attribute values are allowed to have different valid times).
Therefore, this requirement is subsumed by the criteria that the algebra, in fact, be an
algebra, the algebra be a consistent extension of the snapshot algebra, and historical data
loss not be an operator side-effect.

Treats valid time and transaction time uniformly [Gadia & Yeung 1988]. Gadia and
Yeung have proposed a generalized relational model in which valid time and transaction
time can be represented as two dimensions of a multi-dimensional attribute time-stamp
[Gadia & Yeung 1988]. They also have shown how this uniform representation of valid
time and transaction time can be used to advantage in expressing queries that involve
changes in state. Ben-Zvi also has proposed a symmetrical representation for valid time
and transaction time [Ben-Zvi 1982]. Unfortunately, this uniform treatment of valid time
and transaction time can't be extended to include update operations. Transaction time has
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a specific semantics, very different from that of valid time, that requires special handling
on update. Valid time Is specified by the user and its value can be derived, via an algebraic

expression, from values in underlying relations. Transaction time, however, is simply the

time, as measured by a system clock, when update occurs. Its value can't be specified

by the user or derived from underlying relations. For update, therefore, it would seem

impossible to treat valid time and transaction time uniformly and still retain a consistent

semantics for transaction time. Hence, we don't include this property as a criterion.

Minimal extension of the snapshot algebra. This requirement is too vague to be con-
sidered a criterion, unless qualified. Criteria such as "consistent extension of the snapshot

algebra," "reduces to snapshot algebra," and "unique representation for each historical

relation state," all imply a minimal extension to the snapshot algebra.

Retains the simplicity of the snapshot model. Again, this requirement is too vague

to be considered a criterion, unless qualified. Note that specific aspects of simplicity are
implied by other properties that are well-defined (e.g., "model doesn't require null attribute
values" and "algebra is unisorted").

The model is semantically complete [Clifford & Tansel 1985]. The model should serve
as a standard for defining historical completeness (i.e., an extension of Codd's notion of
completeness in the snapshot model). This requirement has no objective basis for evaluating

models as there is no consensus definition of historical completeness.

8.4 Incompatibilities

Not all the criteria listed in Table 8.3 are compatible. There are certain subsets of criteria
that no algebra can satisfy. In this section, we examine the incompatibilities among criteria.

The criterion that the algebra support a three-dimensional conceptual visualization
of historical states and operations is incompatible with the criteria that

"* Tuples, not attributes, be time-stamped,

"• AUf attributes in a tuple be defined for the same interval(s), and

"* The equivalence Q ((R -S) =_ (QýR).(Q (S) hold.

First, no algebra can support a three-dimensional conceptual model of historical states

and operations and also time-stamp tuples. For the algebra to support a three-dimensional
conceptual model of historical states and operations, the algebra must support a cartesian

product or join operator that concatenates tuples, independent of their valid times, and

preserves, in the resulting tuple, the valid-time information for each of the underlying
tuples. Yet, if the cartesian product operator assigns different time-stamps to attributes

in its output tuples, the criterion that tuples, not attributes, be time-stamped cannot be

satisfied. Hence, no algebra can satisfy both of these criteria.
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Secondly, no algebra can support a three-dimensional conceptual model of historical
states and operations and also require that all attributes in a tuple be defined for the same
interval(s). If the cartesian product operator required that all attributes in a resulting tuple
be defined over the same interval(s), arbitrary valid-time information associated with the
attributes of the underlying tuples could not be preserved and the criterion that the algebra
support a three-dimensional conceptual model of historical states and operations could not
be satisfied. Yet, if the cartesian product operator preserved the valld-time information
for the attributes of the underlying tuples in the resulting tuple, attributes in the resulting
tuple would be defined for different intervals and the criterion that all attributes in a tuple
be defined for the same interval(s) could not be satisfied.

Thirdly, no algebra can support a three-dimensional conceptual model of historical
states and operations and also support the distributive property of cartesian product over
difference. For example, consider the following single-tuple historical states over the relation
signature Student with attributes {uname, course) and attribute time-stamping.

A = snmem course

( "Phil", {1, 2, 3} ) ( "Math", {1, 2, 3})

B = Sems CoUr"s e

"( "Norman", {1, 2}) ( "English", {1, 2)

C = sname course

"( "Norman", {2} ) ( "English", {2)

Figure 8.4 illustrates the representation of historical states as spatial objects in cal-
culating Ak(B-^ C) and (A)<B)-Z(AkC), respectively. The results of these calculations are
shown below.

Ak(B-- C) =

sazme1  coursel enaMe 2  course 2

("Phil", {1, 2, 3)) ("Math", {1, 2, 3} )("Norman", {1}) ("English", {1})

(AkB)-Z (AiC) =

snamene course,1  8aze 2  ( COUrS 2

"("Phil", 0) ("Math", 0) ("Norman", {1},) ("English", {1))
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Figure 8.4: Aý(B-C) and (AýB)-^ (AkC)

This example shows that the criterion that the distributive property of cartesian
product over difference hold is incompatible with the criterion that the algebra support a
three-dimensional conceptual visualization of historical states and operations.

There are two other incompatibilities among the criteria in Table 8.3. First, the
criterion that each set of valid tuples be a valid relation state is incompatible with the
criterion that there be a unique representation for each relation state. If every set of
valid tuples were allowed to be a valid relation state, the algebra could not have a unique
representation for each state. For example, the following are only two of several equivalent
representations of a relation state A over the relation signature Home with attributes
{hname, state) and attribute time-stamping.

A= I am state

"( "Norman", {1, 2, 3, 4)) ( "Utah", {1, 2, 3, 4)
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A - hname state

"("Norman", {1, 2}) ("Utah", {1, 2} )

"("Norman", {3, 4)) ("Utah", f3, 41)

Yet, if the algebra allowed only one of these representations, there would be sets of valid
tuples that would not be valid relation states. Hence, no algebra can satisfy both of these
criteria.

Finally, the criteria that the algebra support a three-dimensional conceptual visual-
ization of historical states and operations, have a unique representation for each historical
relation state, and restrict relation states to first-normal-form are incompatible. An alge-
bra can be defined that satisfies any two of these criteria, but no algebra can be defined
that satisfies all three criteria. For example, consider the following two single-tuple rela,-
tion states over the relation signature Home with attributes {hname, state} and attribute

time-stamping.

A = hname st~ate
"-Phil", 11, 2, 3} ) ( "Kansas", (1, 2, 3)

B = hname state

( "Phil", {2} ) ( "Kansas", {2} )

To define difference so that A-^B can be calculated consistent with the conceptual model
of historical operators as "volume" operators on spatial objects, the algebra must allow
tuples with duplicate attribute values in a relation state

A-^ B = hname state

"( "Phil", (1} ) ( "Kansas", (1) )

"("Phil", {3}) ("Kansas", 13))

or allow the time-stamp associated with a tuple to be non-atomic (i.e., a set of intervals
rather than a single interval).

A-^ B =hnme state

-Phil", {I, 3) "Kansas",

Thus, to support a three-dimensional conceptual visualization of historical states and oper-
ations and disallow tuples with duplicate attribute values, which is implied by the criterion
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Supports a 8-dimensional view of historical stateo and operations?

No Yes

All attributes in a tuple cannot be
defined over the same interval(s).

1 0No restrictions. The distributive property of cartesian
product over difference cannot hold.

Tuple time-stamping cannot be used.

All attributes in a tuple cannot be
defined over the same interval(s).

The distrlbutiveproperty of cartesian
product over difference cannot hold.S Each set of valid tuples cannot be

Sa valid relation state. Tuple time-stamping cannot be used.

Each set of valid tuplee cannot be aI. valid relation.

Relation states cannot be restricted
to first-normal-form.

Table 8.4: Incompatibilities Among Ciiteria

that the algebra have a unique representation for each historical state (if attributes are
time-stamped), the algebra must allow non-first-normal-form relation states.

The five incompatibilities described above all involve at least one of the two criteria

s Supports a three-dimensional conceptual visualization of historical states and opera-

tions and

e Unique representation for each historical relation state.

Table 8.4 summarizes the effect satisfaction of these two criteria has on the algebra's ability
to satisfy other criteria. Note that if the algebra satisfies neither of these criteria, then it
can satisfy all the other criteria. If, however, the algebra satisfies both of these criteria,
then there are five criteria that it cannot satisfy.

8.5 An Evaluation of Historical and Temporal Algebras

In this section wf evaluate 11 algebras against the criteria presented in the previous sec-
tion. We consider Ben-Zvi's Time Relational Model [Ben-Zvi 1982], Clifford's Historical
Relational Data Model fClifford & Croker 1987], Gadia's homogeneous model [Gadia 1988J,
Gadia's and Yeung's heterogeneous model [Gadia & Yeung 1988], Jones' extension to the
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snapshot algebra to support time-oriented operations for LEGOL [Jones et al. 1979],
Lorentzos' Temporal Relational Algebra [Lorentzos & Johnson 1987A], our algebra, Na-
vathe's Temporal Relational Model [Navathe & Ahmed 1986], Sadeghl's historical alge-
bra [Sadeghi 1987], Sarda's historical algebra (Sarda 1988], and Tansel's historical algebra
[Tansel 1986]. Table 8.5 summarizes W.he evaluation of these 11 proposals against the crite-
ria. We did not include TERM [Klopprogge 1981] and PDM [Manola & Dayal 19861, both
of which include support for time, in this evaluation as they are temporal extensions of
other data models. TERM is an extension of the Entity-Relationship model and PDM is
an extension of the entity-oriented Daplex functional data model.

8.5.1 Conflicting Criteria

We first evaluate the algebras against the seven criteria introduced in the previous section
that are not all compatible. Because no algebra can satisfy all seven of these criteria, we
term the criteria conflicting criteria.

All attributes in a tuple are defined for the same interval(s). Only Gadia's homo-
geneous model satisfies this criterion. All the other algebras either time-stamp tuples or
allow attribute time-stamps in a tuple to be disjoint.

Each set of valid tuples is a valid relation state. The algebras proposed by Ben-
Zvi, Jones, Lorentzos, Sarda, and Tansel all satisfy this criterion. Gaodia's homogeneous
model also satisfies this criterion. Clifford's algebra falls to satisfy this criterion because a
relation state can't have two tuples that match on the values of the key attributes at the
same chronon. The heterogeneous model proposed by Gadia and Yeung, likewise, fails to
satisfy this criterion; their algebra doesn't allow a relation state to have two tuples that
match values on the key attributes. Our algebra also fails to satisfy this criterion because
it doesn't allow relation states with value-equivalent tuples, that is, tuples with the same
attribute values. Finally, the algebras proposed by Navathe and Sadeghi also fall to satisfy
this criterion. Their algebras require that tuples with identical values for the explicit
attributes be coalesced; hence, tuples with identical values for the explicit attributes can
neither overlap nor be adjacent in time.

Restricts relation states to first-normal form. The algebras proposed by Ben-Zvi,
Jones, Lorentzos, Navathe, and Sadeghi restrict relation states to first-normal form. The
other algebras all fail to satisfy this critcrion as they either allow set-valued attributes or
set-valued time-stamps, or both.

Supports a three-dimensional conceptual visualization of historical states and oper-
ations. Our algebra supports the user-oriented conceptual visualization of a historical
relation state as a three-dimensional object in that it supports non-homogeneous attribute
time-stamping and prevents historical data loss as an operator side-effect. Operators in
Clifford's algebra, with the exception of the join operators, satisfy this criterion. Although
lifespans are associated with tuples, cartesian product is defined to prevent historical data
loss as an operator side-effect through the introduction of nulls into the cartesian product's
output tuples. It is unclear whether Gadia's and Yeung's algebra and Tansel's algebra
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Clifford Gadia Jonse
Ben-Zvi & Gadia &

Conflicting Criteria Croker Yeung et a.
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satisfy this criterion as all operations are not defined formally. The other algebras all fail
to satisfy this criterion.

Lorentzos' algebra fails to satisfy this criterion when relation states have multiple
attribute time-stamps. For example, consider the following single-tuple relations over the
relation signature Student with attributes {snazne, course), valid in Lorentzos' algebra.

A = 8name n-start n-stop course c-start I-stop

"Marilyn" 2 5 L"Math" 2 5

B = nanus n-start n-atop course c-start c-stop

"Marilyn" t 4 "Math" 1 4

In Lorentzos' algebra, historical difference is defined in terms of the Unfold, set difference,
and Fold operators. If we unfold both A and B, apply set difference to the unfolded
relations, and then fold the result, we would get

A-^B sunamne n-start n-stop course c-start c-Stop

"Marilyn" 2 4 "Math" 4 5

"Marilyn" 4 5 "Math" 2 5

This result is inconsistent with the conceptual visualization of historical relation states as
three-dimensional objects and operations on historical relation states as "volume" opera-
tions on spatial objects, as shown in Figure 8.5.

The homogeneous model proposed by Gadia and the algebras proposed by Ben-Zvi,
Navathe, Jones, and Sadeghi also fall to satisfy this criterion. None of these algebras
provides a cartesian product operator that allows for the concatenation of two tuples con-
taining arbitrary historical information without the loss of historical information or, in
Jones' algebra, the possible implicit addition of historical information. In Gadia's homo-
geneous model, attributes are time-stamped but the time-stamps of individual attributes
are required to be identical. This requirement necessitates the definition of cartesian prod-
uct using intersection semantics. In Ben-Zvi'8 algebra, tuples rather than attributes are
time-stamped and a Time Join operator is defined using intersection semantics. Likewise,
in Navathe's tlgebra, tuples rather than attributes are time-stamped and two operators,
TCJOIN and TCNJOIN, are defined using intersection semantics. Navathe also defines
two operators, TJOIN and TIRJOIN, that allow for the concatenation of tuples without
loss of historical information. These operators, however, are outside Navathe's algebra;
they produce tuples with two time-stamps (R. Ahmed, personal commuuication, 1987).
In Jones' algebra, tuples are time-stamped and cartesian product operators are defined
using both intersection and union semantics. Finally, in Sadeghi's algebra, tuples are time-
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Figure 8.5: Conceptual View of the Difference Operator Applied to Historical Relations

stamped and the join and cartesian product operators are both defined using intersection
semantics.

Consider the following single-tuple relation states over the relation signatures Student
with attributes {snaiae, course) and Home with attributes {hname, state). Assume
attribute time-stamping.

A = shame course

"( "Marilyn", {2, 3, 41 ) ( "Math", {2, 3, 41)

B = hname state

"( "Marilyn", { 1, 2, 3) ) ( Texas, {1, 2, 31)

If cartesian product is represented conceptually as a "volume" operation on spatial objects,
we would expect

Ak(B =

I nau course hname state

"(-Marilyn", {2,3,4)) ("Math", {2,3,4}) ("Marilyn", {1,2,3}) (Texas, {1,2,3})

as illustrated in Figure 8.6. However, since Gadia's homogeneous model and the algebras
proposed by Ben-Zvi, Navathe, Jones, and Sadeghi all define cartesian product using in-
tersection or union semantics, none can support this conceptual visualization of cartesian
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Figure 8.6: Cartesian Product of Historical Relations

product.

Sarda, in addition to defining a cartesian product operator using intersection seman-
tics, allows the relational cartesian product operator to be applied to historical relation
states. Although tuples in the result retain the time-stamps of their underlying tuples, the
result is not a historical relation state. Its semantics is left unspecified. Hence, Sarda's
algebra also fails to satisfy this criterion.

Supports basic algebraic equivalences. Ben-Zvi's algebra, Gadia's homogeneous model,
and Lorentzos' and Sadeghi's algebras satisfy this criterion. Jones' algebra supports the
equivalences, with one exception. The cartesian product operator defined using union
semantics fails to support the distributive property of cartesian product over difference. All
the equivalences, except the distributive property of cartesian product over difference, also
hold for both Clifford's and our algebras. Tansel's algebra doesn't support the commutative
property of selection with union and difference. It is unclear whether Tansel's algebra
satisfies the other equivalences as union and difference are not defined formally. Similarly,
it is unclear whether all the equivalences hold for Gadia's and Yeung's heterogeneous model,
Navathe's algebra, and Sarda's algebra.

Tuples, not attributes, are Lime-stamped. Ben-Zvi, Jones, Navathe, Sadeghi, and
Sarda all time-stamp tuples. Clifford also time-stamps tuples, but requires that the partial
function from the time domain onto a value domain, representing an attribute's value, be
further restricted to the attribute's time-stamp in the relation scheme. The other algebras
all time-stamp attributes.

Unique representation for each historical relation state. Gadia's and Yeung's hetero-
geneous model supports a unique representation for each historical relation state because
it doesn't allow two tuples to match values on the key attributes. Because our algebra al-
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lows set-valued time-stamps and disallows value-equivalent tuples, it too supports a unique
representation for each historical relation state. Because Navathe and Sadeghi require that
value-equivalent tuples be coalesced, their algebras also satisfy this criterion. None of the
other algebras satisfy this criterion. They all allow multiple representations of identical his-
torical Information within a relation state. Note that Clifford's algebra fails to satisfy this
criterion because it only requires that no two tuples in a. relation state match values on the
key attributes at the same chronon. Hence, a relation state may contain value-equivalent
tuples, even value-equivalent tuples adjacent in time, as long as they don't overlay in time.

8.5.2 Compatible Criteria

We how evaluate the algebras against the remaining 22 criteria. Because these criteria are
compatible, an algebra can be defined that satisfies all these criteria.

Consistent extension of the snapshot algebra. Our algebra, along with those proposed
by Ben.Zvi, Clifford, Jones, Lorentzos and Sadeghi, satisfy this criterion. Gadia's homoge-
neous model also satisfies this criterion. Although formal definitions for all operators are
not provided for the other algebras, they too are likely to satisfy this criterion.

Data periodicity is supported. Only Lorentzos' algebra satisfies this criterion. Lorent-
Zos' algebra allows multiple time-stamps of nested granularity, which can be used to specify
periodicity. None of the other algebras allows multiple time-stamps of nested granularity.

Each collection of valid attribute values is a valid tuple. Tansel's and Sarda's algebras
satisfy this criterion. Tansel's algebra time-stamps attributes without imposing any inter-
attribute dependence constraints; any collection of valid attribute values is a valid tuple.
Sarda's algebra encodes a tuple's time-stamp within a single attribute without imposing
any inter-attribute dependence constraints.

The algebras proposed by Ben-Zvi, Jones, Navathe, and Sadeghi fail to satisfy this
criterion because all three use implicit attributes to specify the end-points of a tuple's time-
stamp, implicitly requiring that the value of the start-time attribute be less than (or "<")
the value of the stop-time attribute in all valid tuples. Lorentzos' algebra also requires that
the values of attributes representing the boundary points of intervals be ordered. Clifford's
algebra doesn't satisfy this criterion because the value of each attribute in a tuple is defined
as a partial function from the time domain onto a value domain, where the function is
restricted to times in the intersection of the tuple's time-stamp and the attribute's time.
stamp in the relation scheme. Hence, the interval(s) for which an attribute is defined
depeuds on both the tuple's time-stamp and the attribute's time-stamp in the relation
scheme. Gadia's homogeneous model fails to satisfy this criterion because all attribute
values in a tuple are required to be functions on the same temporal element. Gadia's and
Yeung's heterogeneous model also fails to satisfy this criterion because relation states are
restricted to non-null tuples. Finally, our algebra falls to satisfy this criterion because it
doesn't allow the time-stamps of all attributes in a tuple to be empty.

Formal semantics is specified. We, Clifford, and Lorentzos provide a formal semantics
for our algebras, as does Gadia for his homogeneous model. Jones, however, provides no
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formal semantics for the timeoriented operations in LEGOL; she provides only a brief sum-
mary of time-oriented operations available in the language, along with examples illustrating
the use of some of these operations.

Ben-Zvi and Tansel provide formal semantics for their algebras but provide Incomplete
definitions for certain operators. For example, Ben-Zvi's definition of the difference operator
doesn't include a definition of the Effective- Time-Start and Effective- Time-End of tuples in
the resulting relation, and Tansel doesn't provide formal definitions for his historical union
and difference operators. Likewise, Gadia and Yeung don't provide formal definitions for
their historical difference and intersection operators.

Navathe provides formal semantics for three new historical selection and four new
historical join operators. He retains the five basic snapshot operators, although his model
requires that value-equivalent tuples be coalesced. The semantics of these operators are left
unspecified. Sadeghi also requires that value-equivalent tuples be coalesced. He provides
formal semantics for all operators, but the semantics of some operators (e.g., union) doesn't
preserve this value-equivalence property of historical relation states.

Sarda provides formal semantics for five new historical operators and selection and
projection, when applied to historical relation states. Although he allows the cartesian
product operator to be applied to historical states, he doesn't provide formal semantics for
the result, which is not a historical state. He also doesn't provide formal definitions for
historical union and difference.

Has the expressive power of a temporal calculus. Gadia has defined an equivalent
calculus for his homogeneous model and we have shown, in Chapter 3, that our algebra
has the expressive power of the TQuel calculus. Likewise, Tansel has defined an equivalent
calcudus for his algebra [Tansel & Arkun 1985]. Ben-Zvi has augmented the SQL Query
Language with a Time- View operator and shown that the resulting language has expressive
power equivalent to that of his algebra [Ben-Zvi 1982]. Rather than modify the semantics
of the SQL Query Language to handle the temporal dimension, Ben-Zvi uses the Time.
View operator as a temporal preprocessor to construct snapshot relations that can then
be manipulated the same as any other snapshot relations. Yeung has defined an equivalent
calculus for an earlier version of Gadia's and Yeung's heterogeneous model [Yeung 1986].
Navathe has defined the temporal query language TSQL [Navathe & Ahmed 19861, which
is a superset of SQL, for use in his model. He has not shown, however, that his algebra has
the expressive power of TSQL. Sadeghi has defined a historical query language HQL as an
extension of the query language DEAL [Sadeghi 1987] and shown how to map queries in
HQL onto expressions in his algebra. Sarda has extended SQL to handle historical queries
and has shown how to map sample queries in this language onto expressions in his algebra
[Sarda 1988]. A calculus has yet to be defined for any of the other proposed models.

Historical data loss is not an operator side-effect. Historical data loss is not an opera-
tor side-effect in our algebra. All operators are defined to retain, in their resulting relation
states, the historical information found in their underlying relation ctates, unless removal is
specifically required by the operator. Historical data loss also is not an operator side-effect
in Lorentzos' algebra; all historical information is embedded in snapshot states and all
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operations are defined in terms of the basic snapshot operators. In Clifford's algebra, all
operators, with the exception of the join operators, are defined to prevent historical data
loss as an operator side-effect. Ben-Zvi's algebra, Gadia's homogeneous model, and Jones'
and Sadeghi's algebras all fall to satisfy this criterion because each time-stamps tuples and
defines a cartesian product operator using intersection semantics. It Is unclear whether the
other algebras satisfy this criterion, as formal definitions for all operators are not provided.

Implementation ezists. A prototype version of the algebra proposed by Jones has been
implemented on the Peterlee Relational Test Vehicle [Jones et al. 1979]. Also, a prototype
version of the algebra proposed by Lorentzos has been Implemented on a PDP. 11/44 as an

extension of INGRES [Lorentzos & Johnson 1987B]. We have implemented a prototype of
our algebra, without aggregates (c.f., Chapter 7). Sadeghi has developed an interpreter of
his query language HQL [Sadeghi 1987]. To the best of our knowledge, implementations
do not exist for the other algebras.

Includes aggregates. We along with Ben-Zvi define historical aggregate operators
formally as part of our algebras. Tansel also defines historical aggregate functions in his
algebra in terms of a new operator, termed enumeration, and an aggregate formulation
operator [Tansel 1987]. Aggregate functions, defined for the snapshot algebra, can be
used to compute historical aggregates in Lorentzos' algebra. The algebra proposed by
Jones Includes aggregate operators, but these operators are not defined formally. Although
Gadia does not include aggregates in his models, he does introduce "temporal navigation"
operators (e.g., First), which act similarly to the TQuel temporally oriented aggregates.
The other algebras don't include any aggregate operators.

Incremental semantics defined. Our proposal satisfies this criterion; we define an
incremental version of all operators in our algebra in Chapter 6. An incremental version of
none of the other algebras is provided.

Intersection, 0-join, natural join, and quotient are defined. Historical versions of
these four operators are defined for our algebra (c.f., Section 3.6). Ben-Zvi defines a join
operator, and Clifford defines intersection, 0-join, and natural join operators. Gadia defines
intersection, 0-join, and natural join in his homogeneous model. Yeung defines all four
operators in an earlier version of Gadia's and Yeung's heterogenous model [Yeung 1986],
but they aren't defined in the later version of this model [Gadia & Yeung 1988]. Finally,
Navathe defines historical versions of join and natural join. None of the other algebras
defines historical versions of these operators.

Is, in fact, an algebra. Clifford's algebra fails to satisfy this criterion because it is
not closed under union, difference, or intersection. The historical versions of these binary
operators are defined for two relation states only if they are merge compatible (i.e., tuples
from the two relation states that match on the values of the key attributes at some chronon
must also match on all their attribute values at each chronon in the intersection of their
lifespans). Likewise, Gadia's and Yeung's heterogeneous model doesn't satisfy this criterion
because it is not closed under union. The union of two relation states is undefined if there
are tuples in the relation states that match on the values of the key attributes but have
different values at some time for some attribute. It is unclear whether Sarda's proposal
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satisfies the closure property as cartesian product of historical states, although allowed,
produces a result that is not a historical state. Its semantics, however, is left unspecified.
Each of the other proposals being evaluated satisfies this criterion.

Model doesn't require null attribute values. Clifford's algebra fails to satisfy this cri-
terion. The cartesian product operator assigns null values to attributes in an output tuple
for each chronon that is in the lifespan of the output tuple but not in the lifespan of the
input tuple associated with that attribute. The other algebras being evaluated all satisfy
this criterion.

Multi-dimensional time-stamps are supported. Only Gadia's and Yeung's heteroge-
neous model satisfies this criterion. None of the other algebras supports multi-dimensional
time-stamps. We discuss, however, extension of our algebra to support multi-dimensional
time-stamps in Section 3.6.

Optimization strategies are available. Ben-Zvi describes an efficient implementation
of his algebra, while Gadia presents a computational semantics, designed to aid efficient
implementation of the algebra, for his homogeneous model. Also, optimization techniques
based on the algebraic equivalences, with certain exceptions for some algebras, could be
used in an implementation of any of the 11 algebras.

Reduces to the snapshot algebra. Gadia's homogeneous model satisfies this criterion;
operators are defined using a snapshot semantics thus guaranteeing that the algebra reduces
to the snapshot algebra. Likewise, the descriptions of the algebras proposed by Ben-Zvi and
Jones imply that the operators are defined using snapshot semantics. Because Navathe,
Sadeghi, and Sarda all assume tuple time-stamping, their algebras also satisfy this criterion.
Although formal definitions have not been provided for all operators in Gadia's and Yeung's
heterogeneous model, the algebra can satisfy this criterion only through the introduction of
distinguished null's when taking snapshots. Because we, along with Tansel and Lorentzos,
allow non-homogeneous attribute time-stamps, our algebras also satisfy this criterion only
through the introduction of distinguished null's when taking snapshots. Likewise, because
Clifford doesn't require that all attributes in a tuple be defined for the same lifespan (i.e.,
an attribute's value in a tuple is specified only for chronons in the intersection of the tuple's
lifespan and the attribute's lifespan in the relational scheme), his algebra also satisfies this
criterion only through the introduction of distinguished null's when taking snapshots.

Supports relations of all four classes. Gadia's and Yeung's heterogeneous model,
because it allows multi-dimensional time-stamps, can support relations of all four classes.
Our algebra also satisfies this criterion. Ben.Zvi's model, although it supports both valid
time and transaction time, can support rollback and historical relation only by embedding
them in temporal relations. The other algebras, since they don't support transaction time,
can't support rollback or temporal relations.

Supports scheme evolution. Our algebra satisfies this criterion. Ben-Zvi, while de-
scribing an approach for representing an evolving scheme as a temporal relation, doesn't
include provisions for scheme evolution in the formal semantics of his algebra. Hence, his
algebra falls to satisfy this criterion. Gadia and Yeung, although they support transaction
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time, don't address the problem of scheme evolution. Martin describes an approach for
handling scheme changes in Navathe's formalization (Martin et al. 1987], but the algebra
is not extended to support scheme evolution. Because the other algebras don't support
transaction time, they too fail to satisfy this criterion.

Supports static attributes. Lorentzos', Navathe's, Sadeghi's and Tansel's algebras sat-
isfy this criterion by allowing both time-dependent and non-time-dependent attributes. Our
algebra and Gadia's and Yeung's heterogeneous model also can support static attributes.
In these two algebras, the time-stamp of an attribute can be defined independently of the
time-stamps of any of the other attributes in a tuple. In our algebra we would represent a
static attribute as an attribute assigned the time domain. Clifford's algebra fails to satisfy
this criterion because an attribute's value in a tuple can't be specified for chronons that
aren't in the tuple's lifespan. The other four algebras all require that the same valid time
be associated with all attributes in a tuple; therefore, none of these algebras can support
static and time-dependent attributes within the same tuple.

Supports rollback operations. Our algebra satisfies this criterion. The rollback opera-
tors allow queries to be posed on one, or more, arbitrary relation itates without restriction
on the tuples in those states that participate in the query. Gadia's and Yeung's algebra also
satisfies this criterion; transaction time is treated simply as another dimension in a multi-
dimensional temporal element. Ben-Zvi's algebra, although it allows rollback, achieves only
partial satisfaction of this criterion because it requires that the tuples participating in a
query all have a specified valid time in common. All operations in Ben-Zvi's algebra are
defined in terms of a transaction time ti and a valid time te. During expression evaluation,
rollback occurs to the relation state at ts, but only tuples valid at ts are accessed. None of
the other algebras supports rollback operations.

Treats valid time and transaction time orthogonally. Our algebra, along with that
proposed by Ben-Zvi, satisfies this criterion. Gadia's and Yeung's heterogeneous model
also satisfies this criterion. All three support retroactive and postactive changes and allow
independent assignments of valid time and transaction time, without restrictions. The
other algebras all fall to satisfy this criterion because they don't support transaction time.

Unisorted (not multisorted). The algebras proposed by Jones, Lorentzoe, Sadeghi,
and Tansel and the heterogeneous model proposed by Gadia and Yeung are unisorted in
that they define only one object type. All the other algebras are multisorted. We define al-
gebraic operators on snapshot states and historical states. Gadia's homogeneous model is a
multisorted algebra; its object types are historical relation states and temporal expressions.
Clifford defines a multisorted algebra whose object types are historical relation states and
lifespans. Ben-Zvi allows both snapshot and temporal relation states while Navathe allows
both snapshot and historical relation states. Finally, Sarda defines a projection operator
that is allowed to map a historical state onto a snapshot state.

Update semantics is specified. Our proposal satisfies this criterion; the semantics of
update are formalized in Chapter 4. Ben-Zvi defines the semantics of tuple insertion, dele-
tion, and modification but does not extend the formalization to include scheme evolution.

The other proposals do not consider update semantics in their formalizations.
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Supports a 8-dimensional view of historical states and operations?

No Yes

Ban-Zvi

Clifford & Croker
Z Jones, et al. a I

Lorentaos & Johnson

Sarda

ca Navath. & Ahmed Gadia & Young

Sadeghi McKenzie

Table 8.6: Classification of Algebras According to Criteria Satisfied

8.5.3 Evaluation Summary

Of the 29 criteria listed in Table 8.3, each is satisfied by at least one of the 11 algebras and
three are satisfied, at least partially, by all the algebras. As was shown in Table 8.4, the
subset of conflicting criteria that an algebra can satisfy is necessarily dependent on whether
the algebra supports a three-dimensional conceptual visualization of historical states and
operations and whether each historical relation in the algebra has a unique representation.
For example, we, Gadia and Yeung, Navathe, and Sadeghi cannot satisfy the criterion
that each set of valid tuples is a valid relation because our algebras satisfy the criterion
that each historical relation has a unique representation. In Table 8.6 all 11 algebras are
classified according to their satisfaction of these two criteria. (We assume, for purposes of
discussion, that operators not defined by Gadia and Yeung and by Tansel could be defined
consistent with the conceptual visualization of historical relation states as spatial objects
and operations on historical relation states as "volume" operators on spatial objects).
According to this classification and the summary of incompatibilities among criteria in
Table 8.4, Navathe's and Sadeghi's algebras can't satisfy one of the remaining conflicting
criteria, Clifford's and Tansel's algebras can't satisfy three of the remaining criteria, while
our algebra and the heterogeneous model proposed by Gadia and Yeung can't satisfy any
of the remaining conflicting criteria. The other algebras are not restricted from satisfying
the remaining conflicting criteria. There is no apriori reason any of the compatible criteria
cannot be satisfied; one measure of the quality of the design of an algebra is the extent to
which it satisfies these criteria.

As no algebra can satisfy all the criteria, a ranking is necessary to identify a maximal
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subset of the criteria. Of the conflicting criteria, we consider the criterion that an algebra
support a three-dimensional conceptual visualization of historical states and operations
to be the most important. If an algebra falls to support this criterion, its semantics is
inconsistent with user intuition for operations on historical zelation states. Hence, we
don't include the criteria that

* Tuples, not attributes, be time-stamped,

* All attributes in a tuple be defined for the same interval(s), or

_ The equivalence Qc(R-^ S) - (QýR))-Z(Q•S) hold

in the maximal subset of criteria as they all conflict with the criterion that the algebra
support a three-dimensional conceptual visualization of historical states and operations.
We do, however, include all the other algebraic equivalences. Of the three conflicting
criteria that remain, we consider the criterion that there be a unique representation for
each relation state more important than the criterion that each set of valid tuples be a
valid relation state or the criterion that relation states be restricted to first-normal-form.
Only by requiring that each relation state have a single representation can we define and
implement algebraic operators with consistent semantics in terms of tuple membership
in a set-theoretic relation state rather than in terms of multiple-element relation-state
equivalence classes. Hence, we propose as maximal the subset of criteria containing the
compatible criteria from Table 8.5 and the criteria that

"* The algebra support a three-dimensional conceptual visualization of historical states
and operations,

"* There be a unique representation for each historical state, and

"" All the equivalences from Table 8.3, except for the distributive property of cartesian
product over difference, hold.

These are indicated by an "i" in Table 8.5 on pages 236 and 237.

Our algebra satisfies this maximal subset of criteria, either fully or partially, with four
exceptions. First, our algebra doesn't support periodicity. However, as we pointed out in
Section 3.6, our algebra can be extended to support periodicity by allowing structured time-
stamps. Second, our algebra doesn't support multi-dimensional time-stamps. Again, we
discuss extension of the algebra to support multi-dimensional time-stamps in Section 3.6.
Third, our algebra doesn't allow each collection of valid attribute values to be a valid
tuple; we require that the valid-time component of at least one attribute in each tuple be
non-empty. Fourth, our algebra is multisorted. None of the other algebras reviewed here
achieves these results.
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8.6 Review of Design Decisions

Having identified a maximal subset of evaluation criteria for temporal extensions of the
snapshot algebra, we can now explaia our choices to the design decisions listed on page 206.
To motivate our choices to the design decisions, we emphasize the importance of those
choices in determining the properties of the algebra.

8.6.1 Time-stamped Attributes

We chose to time-stamp attributes rather than tuples to support historical queries. Support
for historical queries required that we define a cartesian product operator that concatenates
tuples, independent of their valid times, and preserves, in the resulting tuple, the valid-time
information for each of the underlying tuples. Only by time-stamping attributes could we
define a cartesian product operator with this property and maintain closure under cartesian
product.

8.6.2 Set-valued Time-stamps

We. chose to allow set-valued attribute time-stamps to support a three-dimensional concep-
tual visualization of historical states and operations, satisfy various algebraic equivalences,
ensure a unique representation for each relation state, and prevent temporal information
loss as an operator side-effect. If we had decided to disallow set-valued attribute time-
stamps, then we would had to have permitted value-equivalent tuples to model accurately
real-world temporal relationships. Yet, value-equivalent tuples, because they spread tem-
poral relationships among attributes across tuples, would have caused problems in defining
an algebra with the above properties. If value-equivalent tuples had been allowed (and
set-valued attribute time-stamps disallowed), a unique representation for each historical
relation could not have been specified without imposing inter-tuple restrictions on the at-
tribute time-stamps of value-equivalent tuples. Also, historical operators, in particular
the difference operator, that would have satisfied both the algebraic equivalences and the
conceptual visualization of historical operations as "volume" operations on spatial objects,
while preventing loss of information about temporal relationships as an operator side-effect,
could not have been defined.

8.6.3 Single-valued Attributes

We chose to restrict attributes to single values to retain in our algebra the commutative
properties of the selection operator found in the snapshot algebra. If we had allowed set-
valued attributes, without imposing intra-tuple restrictions on attribute time-stamps, then
we would had to have combined the functions of the selection and historical derivation
operators into a single, more powerful operator. This consolidation would have been nec-
essary to ensure that the temporal predicate in the current historical derivation operator
was considered to be true for an assignment of intervals to attribute i~mes only when the
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predicate in the current selection operator held for the attribute values associated with

those intervals. This new operator would have satisfied the commutative properties of

the current selection operator only in restricted cases. Hence we would have limited the

usefulness of key optimization strategies in future implementations of our algebra.

8.6.4 Extended Operator Semantics

We chose to extend the semantics of the conventional relational operators to handle the

temporal dimension directly to support a three-dimensional conceptual visualization of

historical states and operations and ensure a unique representation for each relation state.

Retention of the set. theoretic semantics of the operators would have prevented the algebra
from satisfying these criteria. We definad the semantics of the historical version of each

snapshot operator to be a corisistent extension of the snapshot operator's semantics. Hence,
each expression in the snapshot algebra has an equivalent counterpart in the historical

algebra and expressions in the historical algebra reduce to their snapshot counterparts

when all attribute time-stamps are the samc. Also, we defined all operators to prevent loss

of temporal information as an operator side-effect.

8.6.5 New Temporal Operators

We chose to handle temporal selection, projection, and aggregation by introducing new

operators to perform these functions. We would have preferred separate operators for tem-

poral selection and projection, but were forced to include both functions in the derivation
operator because we chose to allow set-valued attribute time-stamps. If we had disallowed
set-valued time-stamps, we could have replaced the derivation operator by two simpler

operators, analogous to the selection and projection operators, that would have performed

tuple selection and attribute projection in terms of the valid-time components, rather than
the value componeats, of attributes. But, as we discussed above, disallowing set-valued

time-stamps would have required that the algebra support value-equivalent tupes, which
would have prevented the algebra from having several other, more highly deriirable prop-

ertiea.

8.6.6 Transaction Time and Relation States

We chose to assign transaction time to relation states rather than tuples or attributes. In

so doing, we were able to separate, almost entirely, consideration of valid time and trans-
action time in defining the semantics of our algebra. Except for the rollback operators, all

operators, both snapshot and historical, were defined independently of any consideration of

transaction time. Similarly, we were able to define the semantics of update, rollback, and

scheme evolution, without change to the snapshot operators and their historical counter-
parts. Our algebra is consistent with the conceptual visualization of snapshot and historical

relations as single-state relations and rollback and temporal relations as multiple-state re-

lations, indexed by transaction time. The algebra also is consistent with the conceptual
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visualization of database update as change in relation states. Finally, by assigning transac-
tion time to relation states and valid time to attributes, we emphasized the orthogonality
of the two aspects of time.

8.7 Summary

In this chapter we have motivated the choices we made to the design decision listed on
page 206. In so doing, we evaluated 11 temporal extensions of the snapshot algebra against
29 criteria. We first described the algebras in terms of the types of objects they define and
the operations on object instances they allow. Then, we introduced evaluation criteria,
each of which is well-defined, has an objective basis for being evaluated, and is arguably
beneficial. We omited properties from the list of criteria that were either subsumed by
criteria, not well-defined, or had no objective basis for being evaluated. We also identified
incompatibilities among the criteria. Finally, we evaluated the algebras against the criteria,
proposed a maximal subset of the criteria, and reviewed our design decisions, considering
our goal to define an algebra that satisfies as many desirable properties as possible. Our
algebra satisfies all but three of the criteria in the maximal subset of cliteria. None of the
other algebras reviewed here achieves these results.



Chapter 9

Conclusions and Future Work

The thesis of this research is that the snapshot algebra can be extended to support query
and update of temporal databases, while also accommodating the incremental update of
materialized views. To prove this thesis we defined an algebraic language for query and
update of temporal databases. In this chapter we summarize the contributions of this
work, draw some conclusions, and discuss possible ax'eas of future research. This summary
augments that found at the end of each preceding chapter.

9.1 Contributions

We have investigated extension of the suapshot algebra to support two aspects of time:
valid time and transaction time. We have identified design decisions and problems that arise
when one attempts to extend the snapshot algebra to support time and have posed solutions
to those design decisions and problems. Because the snapshot algebra is a significant
component of the relational data model, our work helps to determine the applicability and
extendibility of the relational data model to a temporal data model. Our work also is
an important step toward implementation of a temporal data model, as it is compatible
with many of the existing optimization techniques used to implement RDBMS's. A brief
description of specific contributions of this research follows.

9.1.1 Language

The language, itself, is the major contribution of this work. It is a consistent and compre-
hensive extension of the snapshot algebra for dealing with valid time and transaction time.
The expressive power of the snapshot algebra for database query and update is subsumed
by that of the language. Also, the language

* Formalizes both query and update of temporal databases;

* Treats valid time and transaction time orthogonally;
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* Supports databases containing snapshot, rollback, historical, and temporal relations;

* Accommodates both scheme and contents evolution;

a Handles multiple-command, as well as single-command, transactioni;

@ Supports queries on valid time;

* Allows relations to be rolled back to a previous transaction time;

* Supports both unmateriaiized and materialized views; and,

* Accommodates a spectrum of view maintenance strategies, including query modifica-
tion, in-line view evaluation, immediate recomputation, and immediate incremental
update.

Both the syntax and semantics of the language are defined formally. A variant of
Backus-Naur Form is used to specify the syntax; denotational semantics is used to specify
the semantics. Formal definitions are given for the types of objects and the operations on
object instances allowed in the language. These formal definitions serve as the basis for
proving that the language has the expressive power of calculus-based query languages. Also,
because the language's semantics is defined in a rigorous and formal way, implementations
may be checked against it and proven correct.

The language is shown to have the expressive power of the temporal query language
TQuel. The algebraic equivalence of each TQuel statement is given. The TQuel retrieve
statement, without aggregates and with aggregates in its target list, where clause, and
when clause, is considered, as are the create, append, delete, and replace modification
statements. Hence, the language has sufficient expressive power to serve as the underlying
evaluation mechanism for TQuel.

9.1.2 Temporal Algebra

Definition of a temporal algebra is another contribution. Formal definitions for 13 operators
are given, and the definition of each operator is consistent with the user-oriented conceptual
visualization of historical relation states as three-dimensional objects. Nine of the opera-
tors have counterparts in the snapshot algebra (i.e., union, difference, cartesian product,
selection, projection, intersection, O-join, natural join, and quotient) and one, historical
derivation, effectively performs selection and projection on the valid-time, rather than the
value, component of attributes. Two others support unique and non-unique historical
aggregation. Both of these aggregate operators are defined to accommodate aggregation
windows of arbitrary width as well as families of arbitrary scalar aggregate functions. The
last operator, rollback, allows relations to be rolled back to a previous transaction time.
Although the algebra is a relatively straightforward extension of the snapshot algebra, it
hr,s a collection of desirable properties satisfied in concert by no other temporal algebra.
Also, it is consistent with the snapshot algebra; the semantics of each operator having a
snapshot counterpart reduces to that of its snapshot counterpart when valid time is held
constant.
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9.1.3 Incremental Temporal Algebra

A third contribution of this research is definition of an incremental version of our temporal
algebra. The incremental algebra serves, via incremental expression evaluation, as the basis
for incremental update of materialized historical views. An incremental version of each of
the 13 operators in the temporal algebra is defined. In defining the incremental temporal
algebra we show that our temporal algebra is as amenable to the incremental update of
materialized views as is the snapshot algebra.

9.1.4 Prototype Implementation

Another contribution of this research is a prototype implementation of an incremental query
processor for TQuel. The prototype treats query plans as view definitions for materialized
views, where the views are maintained via the incremental temporal algebra. In building
the prototype, we show that a standard architecture for incremental update of materialized
views in snapshot databases can be adapted to incremental update of materialized views
in temporal databases. We also show that the incremental temporal algebra is compat-
ible with known optimization techniques for implementing incremental query processors;
optimization techniques used to implement incremental query processors for non-temporal
query languages apply equally to our incremental query processor for TQuel.

9.1.5 Evaluation Criteria

The final contribution of this research is identification of criteria for evaluating temporal
extensions of the snapshot algebra. A set of 29 such criteria are presented. These criteria,
although not all compatible, are well-defined, have an objective basis for being evaluated,
and are arguably beneficial. Twenty-five of the criteria are proposed as the maximal subset
of mutually compatible criteria that a temporal algebra could support. In addition to
serving as the basis for objective evaluation of different temporal algebras, the criteria
can be used as a guide in making design decisions when defining a temporal algebra that
will result in an algebra with a maximal subset of desirable properties. To our knowledge,
there has been no previous attempt to identify a comprehensive set of well-defined, objective
criteria for judging the relative merit of temporal extensions of the snapshot algebra.

Ten different proposals for extending the snapshot algebra to support some aspect of
time are described in terms of the types of objects they define and the operations on object
instances they allow. These proposals, along with our language, are evaluated against the
25 criteria we propose as a maximal subset of criteria. Our language satisfies all but three of
the criteria. None of the other proposals reviewed achieve these results. Although previous
studies have compared different temporal algebras, ours is the first to evaluate a number
of temporal algebras against a comprehensive set of well-defined, objective criteria.
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9.2 Conclusions

This research has shown that the snapshot algebra can be extended to support query
and update of temporal databases, while also accommodating the incremental update of
materialized views. The algebraic language that we defined is sufficient to support the
incremental update of materialized views in the context of general support for query and
update of temporal databases. Also, our prototype implementation of an incremental query
processor for TQuel serves as proof that implementation of the language is possible.

Definition of the language, in addition to proving our thesis, provided us insight to
several issues central to the problem of extending the relational algebra to include support
for valid time and transaction time. We present here our observations, some of which we
recognize are controversial, concerning these issues.

"" A historical algebra should be consistent with the user-oriented conceptual visualiza-
tion of historical relation states as three-dimensional objects. This pervasive "spatial
metaphor" [Ariav 1986, Ariav & Clifford 1986, Brooks 1956, Clifford & Tansel 1985]
of a historical relation state provides a conceptual framework, at the users' level, for
assigning meaning to the database object that is a historical relation state. Hence, a
historical algebra's definition for a historical relation state should be consistent with
this spatial metaphor. Furthermore, the algebra's definition for each of its operators
should be consistent with the conceptual visualization of an operation on historical
relation states as a volume operation on spatial objects. Otherwise, the algebra will
be inconsistent with user intuition for operations on historical relation states.

" The treatment of valid time and transaction time cannot be uniform. Transaction
time has a specific semantics, very different from that of valid time, that requires
special handling on update. Valid time is specified by the user and its value can be
derived, via an algebraic expression, from values in underlying relations. Transaction
time, however, is simply the time, as measured by a system clock, when update
occurs. Its value can't be specified by the user or derived from underlying relations.
Although valid time and transaction time can be represented in a uniform manner
[Ben-Zvi 1982, Gadia & Yeung 1988], there is no consistent interpretation for all query
and update operations that accommodates a uniform treatment of the two aspects of
time. We elected to associate transaction time with relation states to make formal
definition of the language as straightforward as possible in the presence of rollback
operations and scheme evolution, but we could have associated transaction time with
either tuples or attributes without changing the language's semantics. After doing
this research, however, we do not believe it possible to define historical operators with
a consistent conceptual basis that manipulate transaction time in the same way they
manipulate valid time. Likewise, we do not believe it possible to define meaningful
update operations that treat valid time and transaction time similarly. Note, however,
that our non-uniform handling of valid time and transaction time does not preclude
the language's use as the underlying query evaluation mechanism for queries posed



255

in terms of transaction time [Gadla & Yeung 1988]. Queries of this type can be
supported by first converting transaction time to an explicit attribute via the rollback
operator, as discussed in Section 4.3, and then treating that attribute the same as any
other explicit, user-defined attribute in evaluating the expression (perhaps involving
aggregates) that denotes the aitswer to the query. By converting transaction time to
an explicit attribute, we are able to support queries over transaction time without
having to introduce new operators that are inconsistent with the spatial metaphor of
historical relation states as tree-dimensional spatial objects.

" Integrity constraints should be modeled as restrictions on database update operations,
not as restrictions on the algebraic manipulations of relation states. Although in-
tegrity constraints will be an essential part of any temporal data model, our historical
algebra, like the snapshot algebra, is defined independently of any consideration for in.
tegrity constraints. Although we have not addressed the issue of integrity constraints,
our language would properly support integrity constraints as additional predicates in
the definitions of commands, rather than as extensions of the historical operators.
Only by not considering the issue of integrity constraints were we able to define a
historical algebra whose operators all satisfy the closure property of algebras.

" Definition of a historical algebra should include historical versions of all the basic
snapshot operators. Definition of a historical algebra with a consistent conceptual
basis for each of its operators is a relatively simple task when only a few operators
are considered; it is a much more difficult task when historical counterparts of all
five basic snapshot operators, as well as new historical operators, are considered.
Also, definition of historical versions for some subset of operators does not guarantee
that compatible definitions exist for the other operators. We gained as much insight
to the problem of adding valid time to the snapshot algebra from defining historical
union, difference, and cartesian product as as we did from defining historical selection,
projection, and join. We also found, to our initial surprise, that historical difference,
in particular, restricted our options for adding valid time to the snapshot algebra.

" Design decisions and algebraic properties are interdependent. There are a few basic
design decisions (c.f., Section 3.1) that one must make to add valid time to the
snapshot algebra, the choices one makes to these decisions being important factors
in determining the properties of the resulting algebra. Likewise, for an algebra to
have a certain property, appropriate choices must be made to these design decisions.
We found that, unfortunately, not all desirable properties of historical algebras are
compatible and that many subtle issues arise when attempting to define an algebra
that has several desirable properties. There simply is no combination of choices to
design decisions for which the resulting historical algebra has all possible desirable
properties. Hence, the best that can be hoped for when defining a historical algebra
is an algebra with a maximal subset of the most desirable properties.
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9.3 Future Work

The research presented here, while it poses a solution to the problem of adding valid time
and transaction time to the relational algebra, suggests additional work in several areas.
These areas for future work include temporal data models, language extensions, additional
evaluation criteria, implementation issues, and language completeness.

One area for future work is definition of a tempoial data model. The relational model
consists of three components: a set of objects, a set of operations, and a set of integrity
rules [Codd 1981, Date 1986E). A temporal data model also should have all three of these
components. Our language addresses the issue of defining temporal objects and operations
on temporal objects in the context of general support for query and update of temporal
databases, but it does not address the related issue of temporal integrity rules. Although
temporal integrity rules have been studied [Ariav 1986, Gadia & Yeung 1988, Navathe &
Ahmed 1987], the role of temporal keys and functional dependencies in our language has
yet to be investigated. Hence, to define a temporal data model based on our language, we
need to extend our language to include support for temporal integrity rules.

Another area for future work is definition of an algebra for signatures, analogous to
those for snapshot and historical relation states. In Chapter 4 we required that signature
specifications in commands be a relation's current signature or a constant. To remove this
restriction, we need to define an algebra for signature specification that would support
signature changes dependent on both the current and past signatures of relations in the
database. There also are a number of other language extensions that are possible. These
include

"* Extension of the language to accommodate deferred update of materialized views,

"• Extension of the historical algebra to support both multi-dimensional time-stamps
and periodicity,

"• Introduction of algebraic operators that map between the domain of snapshot states
and the domain of historical states directly, and

"* Definition of non-incremental and incremental versions of the historical algebra that
support non-first-normal-form relations.

The set of evaluation criteria presented in Chapter 8 is meant to be exhaustive. Al-
though it includes the known desirable properties of temporal algebras, we anticipate that
additional desirable properties of temporal algebras will be identified as more attention is
given to the role of time in databases.

Our incremental query processor for TQuel is only a prototype. Its development gave
us some insight to the problems we are likely to encounter in implementing the language,
but there are many implementation issues that have yet to be explored. Our current
prototype is composed of two components: a code generator and an interpreter. For
performance, we need to replace these component with a compiler containing a query
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optimizer. The prototype supports neither aggregates nor all the commands. We need
to extend the prototype to support these. Also, there is a need to develop algorithms
for accommodating dynamic time-stamps efficiently, reducing the search space of interval
assignments at historical derivation nodes, and implementing aggregates efficiently. An area
of related work would be evaluation of the effect the implementation techniques discussed
in Chapter 7 have on the performance of TDBMS's that support incremental maintenance
of materialized views. Our TQuel prototype could be used, perhaps after being extended
to support a more complete set of TQuel statements, as a testbed for these performance
studies. Performance studies, such as the comparison of different techniques for cacheing
intermediate relation states between network activations, are likely to provide additional
insight to when various techniques should be used to implement efficient update networks
for historical views.

Finally, language completeness is another area for future work. One approach is to
define a language and propose it as a standard; Codd proposed his snapshot algebra as
the yardstick for snapshot completeness (i.e., supporting neither valid time nor transaction
time). Several others have proposed notions of query completeness based on computability
[Abiteboul & Vianu 1987, Chandra & Harel 1980], which, unfortunately, are incomparable.
We feel that some variation on this latter approach is preferable and await a consensus
to form against which we could measure our language for rollback completeness, historical
completeness, and temporal completeness.
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Appendix A

Symbols

This appendix describes briefly the symbols used in the main body of the paper. It also
identifies the page where each symbol is either defined or first used.

Symbols Usage Page

x Conventional cartesian product operator 68

Historical cartesian product operator 28

X1, i Incremental cartesian product operators 143, 152

6 Historical derivation operator 34

61 Incremental historical derivation operator 148

Conventional difference operator, set difference 27

Historical difference operator 27

_-', .' Incremental difference operators 142, 151

Differential 138

Conventional division operator 48

. Historical division operator 48

n Conventional intersection operator, set intersection 46

SHistorical intersection operator 46

SConventional natural join operator 4'

Historical natural join operator 47

SConventional projection operator 68

* Historical projection opera;.or 30

Incremental projection operators 141, 149
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Conventional O-join 46

Historical 0-join 47

p Rollback operator 57

Historica! rollback operator 57

a Conventional selection operator 68

SHistorical selection operator 29

ax, 5' Incremental selection operators 141, 148

U Conventional union operator, set union 26

0 Historical union operator 26

U1, (il Incremental union operators 142, 150

cf, X, V Temporal expressions, syntactic form 106

,a, tx, Iv Temporal expressions, semantic form 107

1, x', t9  TQuel temporal expressions, syntactic form 104

•, , ' 0•X TQuel temporal expressions, semantic form 105

Boolean predicate, syntactic form 106

Boolean predicate, semantic form 107

TQuel boolean predicate, syntactic form 104

TQuel predicate expression, semantic form 105

r Temporal predicate, syntactic form 106

r, Temporal predicate, semantic form 107

r/ TQuel temporal predicate, syntactic form 104

r, TQual temporal predicate, semantic form 105

A, AA. Set of attributes induced by a relation signature 24

Historical aggregation function for non-unique aggregates 40

A-V Historical aggregation function for unique aggregates 43

A', A-•' Incremental historical aggregation functions 153

a, b, c Attribute variables 30

B By list 37

C, C. Command, syntactic form 57
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V Domain of value domains 60

7) Arbitrary value domain 23

d Database state 66

E, Eu Expression, syntactic form 57

e Number of value domains 23

F Predicate in the selection operators 28

f Scalar aggregate function 40

G Predicate in the historical derivation operator 32

g, Relation variables 105

9, 1, Distinct relation variables in aggrega~tes 118

W, Domain of historical relation states for signature z 24

H Historical state, syntactic form 57

h, 1 Variables ranging over attributes in target list, by-list, or aggregate 30

ht, he Historical tuples 24

I, F9 I',, I.,, Identifier 24

i Relation variable 104

zA Domain of intervals 299

P(./) Power set of ZNA 299

IN, IN, Interval 34

k Number of relations 103

M Relation's MSoT 80

m, mU Number of attributes induced by a relation's signature 26

N Decimal numerial 57

n Length of target list or by-list 29

P, PU Program, syntactic form 56

P, Y Number of attributes appearing in an aggregate 118

p, 9 Number of distinct attributes appearing in an aggregate 118

Q, R, R•, Historical relation states 26

q, r, ru Historical tuple variables 26

Q', A', Rk TQuel relations 101
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q', r', r$ TQuel tuple variables 101
S Snapshot state, syntactic form 57

st, st' Snapshot tuple 60
Time domain 24

•' (T) Power set of T 24
7' Subset of T 277

t, tu Element of T 24
tn Transaction number 66

U, u, v, x Temporary variables 23
V, VU Temporal function in the historical derivation operator 32

W Aggregation window function, syntactic form 57
w Aggregation window function 37
X Set of attributes names 29
Y Relation class, syntactic form W7
Z Relation signature, syntactic form 57
z, zU Relation signature 23



Appendix B

Auxiliary Functions

In this appendix we present formal definitions for the auxiliary functions that appear in
Chapters 3 and 4.

B.1 Semantic Functions

Several auxiliary semantic functions appear in the definitions of the semantic functions
for expressions and commands in Chapters 4 and refCHViews. We present here formal
definitions for each of those auxiliary semantic functions, along with formal definitions for
all semantic functions used, in turn, in their definitions. For these definitions, we assume
that we are given

* The value domains PI, ... , P6 ;

_ The semantic functions D1 , ... , De, where D,, 1 : x < e, maps each string in the
syntactic category S17'.TAI( onto either an element of VD or ERROR; and

e A semantic function DN that maps identifiers in the syntactic category TMtAPI:"7MM
that denote a value domain (i.e., name a value domain) onto that domain and all other
identifiers onto UNBOUND.

9 A semantic function WN that maps identifiers in the syntactic category TM(A/T2".Z£7'
that denote an aggregation windowing function onto that function and all other iden-
tifiers onto UNBOUND.

For these definitions, let

B range over the category BY LZST;

F, F1 , and F 2 range over the category STGMA £A7"$SZSXAW;

FT range over the category IG.MA 7M7AM;

G, GI, and G2 range over the category CI7".A CATRfCSSZIOA;

GF1 and GF 2 range over the category DCC TA .ACTOR;
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GT range over the category DECITA T7t'.M;

HT, HTI, and HT 2 range over the category 1t-WL2£EP

I, IP, 1, 12, 11,1, v1,2, 12,1, and 12,2 range over the category 2P6A/1FlIM7;

RO range over the category 7raC OP;

SO range over the category SCT OP;

S, S1 , and 52 range over the category STT7uW ;

ST, STI, and ST 2 range over the category S-7UPLC;

T, T1, and T 2 range over the category .TM,6 COA.STAN'T;

TS, TS1 , and TS2 range over the category 21M&E ST;

V, V1 , and V2 range over the category TIA46 CA•C%,SSI.VV;

h range over the domain 1"IST(9.ZZCAL STAT&;

ht and ht' range over the domain tS7- T'UCAL W49t2;

a range over the domain S.AAPS-"OT STATC;

st and st' range over the domain S.gAPS*HOT 2UP•C;

u range over the domain [(IZA•A,.TA/" CLASS x TT7%A.A!SACTOAg AiMB-t'X

[( ZAAAC7A o- + {-} ] ]*;

* range over the domain [I1E£,A2rAWK SIQAVA,7Ue x TRAASAC7270 A/ZUMBtfl]*;

w range over the domain [ (SAMAPS7IOT STA7V x 277AAgSACOA AV•.MBTM] +

[•-•aWSRCA L STAf7 x nAA'SAC7ION" A/UMBTf] ]*;

z range over the domain RMLA2T•Og SQOA/a2T.

Unfortunately, some of these conflict with the usage as given in Appendix A; such conflict
was unavoidable. Also, unless specified otherwise, function definitions that involve the
semantic domain I1£67CA2"T.," assume the definition of 7-Z&LAZO(. given on page 61.

B is a semantic function that maps the alphanumeric representation of a list of identifiers in
the syntactic category By LIST onto an element in P (ZVV'1IAMY2" ), the power
set of 1D•DA/VTt•lTZ, if the identifiers denote a valid subset of the attributes in a
given signature. Otherwise, B maps the list onto ERRO.

B : [ BY LIST - SI"KAUZTE ] - P [ '(L/DCAP4T.n7CR) + { ERaO}]

BI )]z = 0
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B1(1)]z = if z(!) = V, then {I} else ERROR

R[(II 12...)]z=

if (z(II) = D,

A B[(I2 ... )] (z - {(I1, Dx)}u {(UI, UNBOUND)}) $ ERROR)

then {I} U B[(1 2 ... )(z -{(, )} U {(II, UNBOUND)})

else ERROR

F is a semantic function that maps the alphanumeric representation of a boolean predicate
in the syntactic category STOMA £•4 .P,6lSSIO'1f onto its corresponding boolean
predicate in the semantic domain SMtEC22K" P7U6D2"CA7E, if it denotes a valid
boolean predicate for the selection operator a (or 6) and a given signature. Otherwise,
F maps the predicate onto ERROR.

F: [S!•MA XPRESSIOA" -- ! SWAVZt1 ] --

[S.6,CX7N0 PR7DICAW + {ERROR}]

FIFT] z = FT[FT]J z

FIFi and F21 z =

if (VALIDF[FI] z A VALIDF[F 2] z)

then FIIFi] z A F[F21 z

else ERROR

F[F1 or F21 z =

if (VALIDF[FI] z A VALIDF[F 2I z)

then FIFI] z V F[F21z

else ERROR

Flnot Fj z = if VALIDF[F] z then -'F[F] z else ERROR

F[(F)] z = (F[Fj z)

FT is a semantic function that maps the alphanumeric representation of a term in the
syntactic category S2'CMA 7FffMM onto its corresponding term in the semantic do-
main St-C 2O.7/" 71MT , if it denotes a valid term in a boolean predicate for the
selection operator a (or 0) and a given signature. Otherwise, FT maps the t2rm onto
ERROR.

FT : [SIOMA 7=1,M SGIGA(AM"] -- [S&ZCCO.A/" T•'7. + {ERROR}]



279

FT[11 RO 12j X = If VALIDFT/11 RO 121 z then 11 ROI[RO] 12 else ERROR

FTJI RO S]z =

if (Z(I) = V) A VALIDFT[I RO S]z)

then I RO[RO] D.ZES]

else ERROR

FTj[S RO I] z =

if (z(I) = D, A VALIDFT[S RO I]z)

then DZI[S] RO[RO] I

else ERROR

G is a semantic function that maps the alphanumeric representation of a temporal predicate
in the syntactic category 'D.CZTA AWTPUSSIOMf onto its corresponding temporal
predicate in the semantic domain V& VA2T!OA/"M P1•t•DCA27, if it denotes a valid
temporal predicate for the derivation operator 6 and a given signature. Otherwise, G
maps the predicate onto ERROR.

G :[VefTA £6APR6S&0A/ -.( &tFA2W?] ---

VrnI'JYA2710 ?7?tDICA7E + {ERROR }

G[true] z = TRUE

GIIGTjz = GT[G Tz

GIGI and G21z =

if (VALIDG[GiIz A VALIDGIG 21z)

then GGu]z A G[G2]z

else ERROR

GIG, or G2] z =

if (VALIDG[Gil z A VALIDGIG 2J z)

then GIGjjz V G[G2]z

else ERROR



280

Ginot G] z = if VALIDG[G] z then -GI[G] z else ERROR

GI[(G)jz = if VALIDG[G] z then (GIG] z) else ERROR

GF is a semantic function that maps the alphanumeric representation of a factor in the
syntactic category DELTA .FAC7T07Z onto its corresponding factor in the semantic
domain Vt 7V. 0A2ZOA/" .MCTO7, if it denotes a valid factor in a boolean predicate
for the derivation operator 6 and a given signature. Otherwise, GF maps the factor

ronto ERROR.

GF: 'DELTA FAC701Z -- S"IgA/A7RC ]

[()velVA/O2A" YAC7MT1 + { ERROR }]

GFIT] z= N[TI

GFIFIRST(V)]z = if VALIDTEIV] z then First(TE[V]jz) else ERROR

GFILAST(V)] z = if VALIDTE[VJ z then Last(TEV]J)z else ERROR

GT is a semantic function that maps the alphanumeric representation of a term in the
syntactic category DELTA 7TMM onto its corresponding term in the semantic domain
VET•IVTA72OKr 7TERM, if it denotes a valid term in a boolean predicate for the
derivation operator 6 and a given signature. Otherwise, GT maps the term onto
ZRROR.

GT : [ "DETA T7'M --+ S/., TR.] --, [V0IV,"CAT/OA/" TtRM + { ERROR }

GTIGF1 RO GF2] z =

if (VALIDGF[GF 1jz A VALIDGF[GF2 ] z)

then GF[GFu] z RO[RO] GF[GF2]j z

else ERROR

GTVI w V 2•]z =

if (VALIDTE[VI]z A VALIDTE[V 21Z)

then TEIVIjz = TEIV21Z

else ERROR

H is a semantic function that maps each alphanumeric representation of a historical state
in the syntactic category 7U-STATE onto its corresponding historical state in the
semantic domain ?aSISITVZC.A4 S7A47T, if it denotes a valid historical state on a
given signature. Otherwise, H maps the historical state onto ERROR.
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H: [ W7-STAT - SO(A247 t] - 1 -M[T 7STORICAL STATh + { ERROR

HI[Ez=0

HIHTJ z = if HTUPLE[HT] z = ht then {ht} else ERROR

HJHTI, HT2 ... ] I Z-

if (HTUPLEIHTI] z = ht A H[HT2 .. h =

A 3I, (I E TACM MMP , A Z(I) 5 UNBOUND /\ Valid(ht(l)) # 0)

A Vht', ht' E h, 31, (I E TDCA/ UM A z(I) 0 UNBOUND

A Value(ht'(I)) 6 Value(ht(I))))

then h U {ht}

else ERROR

HTUPLE is a semantic function that maps each alphanumeric representation of a histor-
ical tuple in the syntactic category H-t-2P£C onto its corresponding historical tuple
in the semantic domain I IS'731RZCA.A WUP£6, if it denotes a valid historical tuple
on a given signature. Otherwise, HTUPLE maps the tuple onto ERROR.

HTUPLE : [ R--UPCe --. SZC'L42'AS, ] ..-* [7-ZSTO"7CAIZ IU• + {ERROR}]

HTUPLEI[(I: Sa TS)j z =

if (z(I) = D, A DVJS] 6 ERROR A TSITS] $ ERROR

A V11, I' E TD.A/1.TFZiM A IA P 1, z(I') - UNBOUND)

then {(I, (D.[S], TS[TSI))}

else ERROR

HTUPLE[(It : St S TI, 2 :S 2 0 TS2 ... )]z=

if (z(II) = V, A D,[Sj # ERROR A TS[TS1 4 ERROR

AHTUPLEI(I 2 : S2@ TS2 ... )] (z- {(II, V.)}U{(II, UNBOUND))) h At)

then ht u {(I,, (DISI ], TSI TS1I))1

else ERROR

N is a semantic function that maps the syntactic category .AVM.MAT2 of decimal numerals
into the semantic domain ZNAIMC of integers.
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N : AVM,4tfAC -. 2",ThQ6"

NIO] = 0

Nil] = 1

N[2] = 2

R is a semantic function that maps an expression onto the set of identifiers in the expression
that name relations.

R : eAI'flCSSZOA -. P~ (TAMtW1,77CR)

R[ [snapshot, Z, S] = 0

RI[historical, Z. H]I = 0
RMr = II}
R[E, UE 21 = R[Edj U RIE 2]1

RIEI-E 21 = R[EI] U R[E 21

RJEI X E21 = R[Ej U R[E 21

Rir F(E)] = R[E]

RIr X(E)] = R(E]

RPp(I. N)j(d, tn) = {I}

RJECJE21 = R[E1]j U R[E 2]1

RIEI- E21 = R[EI] J R[E21

RIE1 E 21 = R[EuI u R[E 21

Rj FF(E)] fR[E=

Rj* X (E)J = R[E]

R16 X (E)] = R[EJ

R[Ij(T. N)](d, tn) = {I}

EIA•4, WI 2 51 31 B (E, .E 2)= R(Ej I URIE 21

EJAU Ii, W,12./13 B (El, E 2 ) ]= R[E1 u R[E2]

RO is a semantic function that maps each alphanumeric representation of a relational
operator in the syntactic category 7RtC OP onto the relational operator that it denotes
in the semantic domain TZ,£CAWTOA/Z OPt7M7WR.
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RO: 1•MC OP -+ R?2AAT/.WA£ OPeRAT7V21.i

RO[<] < .
ROO[a] =

RO[>] =>

S is a semantic function that maps each alphanumeric representation of a snapshot state in
the syntactic category S-STATE onto its corresponding snapshot state in the semantic
domain SM'ARPS'"OT STATE, if it denotes a valid snapshot state on a given signature.
Otherwise, S maps the snapshot state onto ERROR.

S : [ S-STATE - SZQIArW• e] - [SArATS-OT STATE + { ERROR}]

SIC] S = 0

SIST] z = if STUPLE[ST] z = at then {st} else ERROR

SISTI, ST2 ...] z=

if (STUPLEI[STjI z = at A S[ST2 ... I z =

A V0t, at' E 8, WI, (I E T PAEP TE/Z A Z(I) 5 UNBOUND

A at'(,) # at(,)))

then a u {at}

else ERROR

SO is a semantic function that maps each alphanumeric representation of a set operator in
the syntactic category SET OP onto the set operator that it denotes in the semantic
domain SeT OP 4ATOTR.

SO : SET 07P -+ SET OPt"ATOR

sop]u = U
soil-I = -

sol~nl =n

STUPLE is a semantic function that maps each alphanumeric representation of a snapshot
tuple in the syntactic category S-1t4P£C( onto its corresponding snapshot tuple in the
SO-
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semantic domain S,.A/A'PS-TOT 7.•PCC, if it denotes a valid snapshot tuple on a given
signature. Otherwise, STUPLE maps the tuple onto ERROR.

STUPLE : [ S-7lTPCe -* SYAWU ] -+ [SA.APSi-,OT 2UPIZ& + { ERROR}]

STUPLEI[(I: S)]jz =

if (z(I) = D. A D.J[S] 0 ERROR

A V', IP E IM•. IMTJ A P' # I, z(I') = UNBOUND)

then {(I, D.,[S])}

else ERROR

STUPLE(Ii : S 1 , -2 : S2 ... )Jz =

if (Z(11) = D, A D=jS 1j 0 ERROR

A STUPLE[(I 2 : S2 ... )I- {(IZ , A,)) U {(II, UNBOUND))) = at)

then at U {(Ih, D.ISi])}

else ERROR

TE is a semantic function that maps the alphanumeric representation of a temporal expres-
sion in the syntactic category T.M6 £,PA7M6SIOA/ onto its corresponding temporal
expression in the semantic domain TEMPCORAL EATReSS'OAY, if it denotes a valid
temporal expression for the derivation operator 6 and a given signature. Otherwise,
TE maps the expression onto ERROR.

TE :[TM& E £PRT.SSIOA" -- SZCA/A7UR.6 ] ..

EMP•R•4AL eXPRE&SSIO.! + { ERROR
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TE[I/ z = if z(I) = V then I else ERROR

TE[ TSJz = TSITS] z

TE[EXTEND(GFI, GF2 )]z =

if (VALIDGF[GFI]z A VALIDGF[GF 2]z)

then Eztend(GF[GFI] z, GF[GF21 z)

else ERROR

TE[ V1 SO V 2 z =

if (VALIDTEr[Vi]z A VALIDTE[V 2]z)

then TEllVI]z SOISOI TEjV2Dz

else ERROR

TEl(V)j z = if VALIDTE[V] z then (TE[EV] z) else ERROR

TS is a semantic function that maps each alphanumeric representation of a set of time
quanta in the syntactic category ?T'M SET onto its corresponding set of time quanta
in the semantic domain 8 (T).

TS :T SM T -SET (T)

TS[all] = T

TSIl{)] 0

TS[{T}j = {NIT]}

TSI(Ti , T2 ... }]= {N[Tid} U TS[{T2 ... }j

V is a semantic function that maps the alphanumeric representation ot a set of assignments
in the syntactic category 71MCI.67ST onto its corresponding set of ordered pairs
in the semantic domain P ( TCA/YT£Z x 7EM PO7R.A4 £AIP7£SSWK), if all
the assignments denote valid pairs of attributes and temporal expressions for the
derivation operator 6 and a given signature. Otherwise, V inaps the assignment onto
ERROR.

V :[71M LIST - SIKA(AUft] -

[ V(TDCA'417I•/l x 7EMP1RZAL CA'1•SSIOAf) + {ERROR}]
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VI(I:. V)]z=

if (z(I) = D. A TEIV] V ERROR

AVI', I' E TDC.VYTIER A IP 0 I, Z(IP) = UNBOUND)

then {(I, TE[V])}

else ERROR

•- ~V[(Il:= Vl, 12 := V2...)]z=

if (z(II) = 7), A TEl Vi, I ERROR

A V[(1 2 : V 2 ... )J (z - {(1I, PJ)} U {(11, UNBOUND)}) # ERROR)

then VI(I2 :- V2 ... )](z- {(, DT)} U {(I, UNBOUND))) U {(I1, TEIV1 ])}

else ERROR

VALIDB is a semantic function that maps the alphanumeric representation of a list of
identifiers in the syntactic category BY LIST onto the boolean value TRUE or FALSE,
to indicate whether the identifiers denote a valid subset of the attributes in a given
signature.

VALIDB : [BY LIST - SIGAVAWZt] --W { TRUE, FALSE}

VALIDB[ z Z = TRUE

VALIDB[(1)j z = (z(I) = 'D.)

VALIDB[(it, 12... )]z=

(z(l 1 ) = V, A VALIDB[(I 2... )](z - {(:I, D.)} U {(II, UNBOUND))))

VALIDF is a semantic function that maps the alphanumeric representation of a boolean
predicate in the syntactic category STIMA &XP'R•CSIoA" onto the boolean value
TRUE or FALSE, to indicate whether the predicate is a valid boolean predicate for the
selection operator a' (or &) and a given signature.

VALIDF: [SZQMA 4 P/71SS!OA" -* SGIA/A7UR. ] -* { TRUE, FALSE }
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VALIDF[FT] z = VALIDFT[FT] z

VALIDF[F1 and F2 ]z = (VALIDF[Fi]z A VALIDF[F 2]z)

VALIDFIFi or F 21Z = (VALIDF[FI z A VALIDF[F2]z)

VALIDF[not F1 z = VALIDF[F] z

VALIDF[(F)J z = VALIDFIF] z

VALIDFT is a semantic function that maps the alphanumeric representation of a term
in the syntactic category STOM.A T1M onto the boolean value TRUE or FALSE., to
indicate whether the term is a valid term in a boolean predicate for the selection
operator a (or &) and a given signatrre.

VALIDFT: [ S2IQMA 7"RM -- SIOA( W ] R { TRUE, FALSE )

VALIDFT[1 RO 121z = (z(IW ) = z(1 2) = V7)

VALIDFT[I RO S] z = (z(1) = VD_ A D.,S] 0 ERROR)

VALIDFT[S RO I] z = (z(I) = D. A D.,S] 5 ERROR)

VALIDG is a semantic function that maps the alphanumeric representation of a temporal
predicate in the syntactic category VCIETA £A'M7CtSSIOA( onto the boolean value
TRUE or FALSE, to indicate whether the predicate is a valid boolean predicate for the
derivation operator b and a given signature.

VALIDG : [ DtCTA CAPTReSS2"OA( --- S2"QArAR"] -. { TRUE, FALSE )

VALIDG[GT] z = VALIDGT[GT] z

VALIDG[GI and G2 jz = (VALIDG[Gliz A VALIDG[G2•z)

VALIDG(GI or G2 jz = (VALIDG[Gl]z A VALIDG[G2]z)

VALIDG[not Gj z = VALIDG[G] z

VALIDG[(G)] z = VALIDG[G] z

VALIDGF is a semantic function that maps the alphanumeric representation of a factor
in the syntactic category D6ITA4 F',AC70R onto the boolean value TRUE or FALSE,
to indicate whether the factor is a valid factor in a temporal predicate for the delta
operator 6 and a given signature.
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VALIDGF: [ DECTA .ACTCM- SIGKAIAT ] -- { TRUE, FALSE }

VALIDGF[ T] z = TRUE

VALIDGF[FIRST( V)J z = VALIDTE[ VII z

VALIDGF[LAST(V) ] z = VALIDTE[ V] z

VALIDGT is a semantic function that maps the alphanumeric representation of a term
in the syntactic category DCLTA TtMM onto the boolean value TRUE or FALSE, to
indicate whether the term is a valid term in a temporal predicate for the delta operator
6 and a given signature.

VALIDGT: [ DECTA R•M - ,I"2"' E] ---. { TRUE, FALSE }

VALIDGT[GFI RO GF 21 z = (VALIDGF[GFI] z A VALIDGF[GF 2] z)

VALIDGT[ V1 a V21 z = (VALIDTE[ VI] z A VALIDTE[ V2] z)

VALIDTE is a semantic function that maps the alphanumeric representation of a temporal
expression in the syntactic category T!M6 EARCESSIO.A/ onto the boolean value
TRUE or FALSE, to indicate whether the expression is a valid temporal expression for
the derivation operator 6 and a given signature.

VALIDTE;: [ TIME 9XPM ,S/OA/ -- SIQA/A7Me] -- { TRUE, FALSE }

VALIDTE[I] z = (z(I) 0 UNBOUND)

VALIDTETill z = TRUE

VALIDTE[EXTEND(GFI, GF2)]z = (VALIDGF[GFI]z A VALIDGFIGF 2]z)

VALIDTE[ VI SO V21 z = (VALIDTE[ V1I z A VALIDTE[ V 2j z)

VALIDTE[( V)M z = VALIDTE[ V] z

VALIDV is a semantic function that maps the alphanumeric representation of a set of
assignments in the syntactic category T7M.E LIST to the boolean value TRUE or FALSE,

to indicate whether the assignments denote valid pairs of attributes and temporal
functions for the derivation operator 6 and a given signature.
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VALIDV: [ T•'• ZIST --o S r0A'A.M4 ] a { TRUE, PALSE }

VALIDV[(I:. V)]jz =

(z(I) = Vh, A VALIDTEI V]

AVI', I' E TDE'A M77Z A I' 6 I, z(I') = U NBOUND)

VALIDV[(I 1 :a VI, 12 :m V2 ... )z =

(z(I1) = V. A VALIDTE[VII

AVALIDV[(12 := V 2 ... )] (z - {(Ii, P) U {(Ii, UNBOUND)}))

VALIDW is a semantic function that maps the alphanumeric representation of an aggre-
gation windowing function in the syntactic category WIA(DOW I.A7/C2TIVA onto
the boolean value TRUE or FALSE, to indicate whether the function denotes a member
of an arbitrary semantic domain of aggregation windowing functions. We assume that
the semantic domain of aggregation windowing functions contains, as a minimum, the
constant aggregation windowing functions.

VALIDW: ,YWZADOW ./ T'i --, ( TRUE, FALSE )

VALIDW[ infinity ] = TRUE

VALIDW[N] = TRUE

VALIDW[I] = (WN•I] 0 UNBOUND)

VALIDX is a semantic function that maps the alphanumeric representation of a list of
identifiers in the syntactic category T .A/.f'7ZP. LISTS onto the boolean value TRUE
or FALSE, to indicate whether the identifiers denote a valid subset of the attributes in
a given signature.

VALIDX : [ TD.V72ZCfTX CIST -- SIG, A2WU17 ] -* { TRUE, FALSE }

VALIDX[ ( )I Z =TRUE

VALIDX[(I)] z = (z(1) = V.)

VALIDX[(Ii. 12... )] Z

(z(II) = V, A VALIDX[(12 ... )(z - {(II, V)) U (I1 , UNOUND))))



290

W is a semantic function that maps the alphanumeric representation of an aggregation
windowing function in the syntactic category WI.APOW R.NAVtIOg onto an ele-
ment in the arbitrary semantic domain AQQTQ.ATOA( W,VI.A•tW, ./T-•C72.O/ if
the function denotes a member of this semantic domain. Otherwise, W maps the
function onto ERROR. We assume that the semantic domain of aggregation windowing
functions contains, as a minimum, the constant aggregation windowing functions.

W : WIZPPOW MZ4AC'TION -

[ A0GR0A7IO" T AV tVOW YUACTOA" + { ERROR)

Wlinf•inity] = oo

WIN] = N[Nj

WII] = if WN[Ij 0 UNBOUND then WN[I] else ERROR

X is a semantic function that maps the alphanumeric representation of a list of identifiers in
the syntactic category TDZV .71TTf M 2"ST onto an element in P (VAOMA/1L/7t ),
the power set of TP LA/•.•I'fM, if the identifiers denote a valid subset of the attributes
in a given signature. Otherwise, X maps the list onto ERROR.

X [T•hEX2fTlYZI LIST -- S (KAUR e '] --

[P (ZUv4 Av'n12MIc) + {ERROR}]

X[( )jz=0

X[(I)]z = if z(1) = Pg. then {I} else ERROR

X[ (Ii, 12. .. )] z =

if (z( 1 ) = P)
A X[(12 ... )] (z - {(II, D.,)} U {(11, UNBOUND))) 5 ERROR)

then {M} U X[(1 2 ... )](z - {(li, V.)) U {(I, UNBOUND)))

else ERROR

Y is a semantic function that maps each character string in the syntactic category CLASS
onto the relation class that it denotes in the semantic domain IZC.AT•'OAf CLASS.

Y : CLASS -- Z.6CAITOK CLASS
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Y[snapshot]= SNAPSHOT

Y[rollback] = ROLLBACK

Y[historical] = HISTORICAL

Y[ltmporal] = TEMPORAL

Y' is the same as the semantic function Y with the exception that it maps the special
symbol * onto a relation's current class.

Y' : [ [ CLASS + {*} ] -* IZLA2WK] - 1e?.AA2O.Af CLASS

Y'[*] (u, v, to) = LASTCLASS ((u, v, w))

Y'lanapshot] (u, v, w) = SNAPSHOT

Y'Irollback] (u, v, W) = ROLLBACK

Y'Ihistorical] (u, v, W) = HISTORICAL

Y'temporal] (u, v, w) = TEMPORAL

Z is a semantic function that maps each alphanumeric representation of a relational signa.
ture in the syntactic category SZ"A(AU•R• onto its corresponding relational signature
in the semantic domain 7&CAT2OA( SZQA/WAIWZ, if it denotes a valid signature for
the mapping DN from identifiers (i.e., domain names) to value domains. Otherwise,
Z maps the signature onto ERROR.

Z : STI AWW --. [I(ZCA7l7OAT S•MI AZMe + { ERROR)]

ZI[(h,1 : '1,2)] =

if DN[1, 2]j 0 UNBOUND

then f(I1,,, DNII, 2])} Uf {(I, UNBOUND) I I E TDCAMTs1 6IM A I # j
else ERROR

Z(I -- 11,2, 12,1 : 2,2 ... )j =

if Z[(I 2,1 : 12,2 ... )] = z A z(I, 1 ) = UNBOUND A DNI[1 1 ,2 1] 0 UNBOUND

then z - {(I,, UNBOUND)) U {(I1,1, DN[11 ,2 ])}

else ERROR
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Z' is the same as the semantic function Z with the exception that it maps the special
symbol, onto a relation's current signature.

Z : S[TOMA•S A Tu• + {,}] - C A TS.•Og -

[7-1CC.AT71 SI A.42U7UC + { ER R O ]

Z"j*j(u, v, w) = LASTSIGNATURE((u, v, w))

ZS[(, 11 : 11,2 )](u, v, w) =

if DN[11,21 0 UNBOUND

then {(Ii,,, DN[I1,21)) U {(I, UNBOUND) I I E Z•D ff•tZE A I # I ,I)

else ERROR

ZS[( i,1 : 11,2- 12,1 : 12,2 ... )] (u, v, to) =

if ZW(2,1 : 12,2 ... )] = z A Z(Il,j) = UNBOUND A DN•II, 2] 0 UNBOUND

then z - {(Ii,1, UNBOUND)} U {(I1,,, DNII,21)}

else ERROR

B.2 Other Auxiliary Functions

In addition to the auxiliary semantic functions used in the definitions of expressions and
commands in Chapter 4, seveial other auxiliary functions appear in Chapters 3 and 4.
We present here formal definitions for those functions, along with formal definitions for all
functions used, in turn, in their definitions. For these definitions, let

d range over the domain D = {DI, ... , VD,},

h range over the domain tT.ST)1R1CA.4 ST.4'7",

ht range over the domain 74aSTORIA.4 WUP£C.,

I range over the syntactic category TDOMFUR1,

IN range over the domain LV of intervals defined on page 299,

1, 1I, and 12 range over the domain SAKAPSIOT STA27 + N71I7OTWICAL4 STAII,

a range over the domain SAf.4PS•OT STA.Th,

as range over the domain SA(APSNiOT IUPL£,

T range over the domain P (T), the power set of the domain T,

t, t', t1 , t2, tp, and ts range over the domain T,

tn, tn', tnj, and tn 2 range over the domain [ TRA.SAC7T"O/"/ AM•MBMtf + {-}],

u and u' range over the domain [2.6.49ATOA/ CCASS x 27W.4SACIT7OA(AZIMBtR]*,
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v and V range over the domain

[7ZE&CA77cA( $IQA(AIZIRC x 27MSAC7ZOA( AfuMBe7R*,

to and to' range over the domain

[[SNAUPSOT STATF x 77A4/SAC7TOgA(UVMBM] +

[zsTlRnCAc STATE x 77.A"SA¢C209 .VZ4. B61Z] ]*,

y, yl, and Y2 range over the domain X&C£A710M CLASS; and

z, z1, and Z2 range over the domain "fl&CATtO.A! (SZCA 2f4l.

Again, some of these conflict with the usage as given in Appendix A; such conflict was
unavoidable.

BaseRelation determines whether an identifier denotes a defined base relation in a database
state. For this function's definition, assume that relations are elements of the semantic
domain 7•ZLATIOAJ as defined on page 154.

BaseRelation:

[ TP•& IZHY7TCZ x VATABASt STA7V] -. {TRUE, FALSE}

BaseRelation(I, d) =

d(I) = (ul, u2 , U3, BASE) A LastClass(d(I)) 5 UNDEFINED

Close maps a relation's class sequence u and a transaction number tn onto the subsequence
recorded through transaction tn. It also sets the the second transaction-number com-
ponent in the last element of the resulting sequence to tn if the component is either
"-" or greater than tn.

Close :

[[ ZeIATION CLASS x 7fZAA'SACTtOW" AVM BMt x

[7RASACrnO9 AVM BM + {-} ]] * x T RAA(SAC7.TOA M A BU C] -.

[UA 42IOW CLASS x 77?T4A(SAC7tOAK .VMBMf x

[ T1RAfsACEoN 1 MA(4M BC + {-} ]]
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Cloae(u, tn) =

if (u # ( ) A Head(u) - (y, tnI, in2 ) A tn1 < tn)

then if Tail(u) 0 ( )

then (Head(u)) I Close(Tail(u), tn)

else if (tn 2 = - V (tn 2 # - A tn2 > tn))

then ((y,,tni,tn))

else ((y, tn1 , tn 2))

else ( )

where Head and Tail are the head and tail operations for sequences and "1 " is the con-
catenation operator on sequences.

Consistent is a boolean function that determines whether a class and signature are consis-
tent with an expression's type.

Consistent :

R7EtI£4IOA( CLASS x R£.6A7"MK SI770MAS(?W x

[ 2£tCATIOA( CLASS x RZA7Z1" .A ]t ] --- {TTRUE, FALSE}

Consi.tent(ylt, Z*, (Y12, z2)) =

((Z1 = Z2) A( (y1 = SNAPSHOT A Y2 = SNAPSHOT)

V (1I = ROLLBACK A Y2 = SNAPSHOT)

V(Yj = HISTORICAL A Y12 = HISTORICAL)

V (YI = TEMPORAL A 12 = HISTORICAL)))

Ezpand replaces the second transaction-number component in the last element of a rela-
tion's MSoT class sequence with the special element "-".

Ezpand: (,6.A710A+{((, 0) 0)1] - [+CATZOA/+{((, (,0() ]
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Epand((u, v, w)) -

if 10()

then if (Tail(u) A () A Expand(( Tail(u), v, w)) = (u', v' ))

then (((yl, tni, tn2)) 1 u', v, W)

else (((yi, tni, -)), v, w)

else (u, v, w)

where Head(u) = (y, tni, tn 2).

Extend maps two times onto the set of times that represents the interval between the first
time and the second time.

Extend: T x T .- [V" + {ERROR}]

Extend(t 1, t2 ) =

if 4 :5 t 2

then {tI [t _< t <- t2}

else ERROR

FindClass maps a relation onto the class component of the element in the relation's class
sequence whose first transaction-number component is less than or equal to a given
transaction number and whose second transaction-number component is greater than
or equal to the transaction number. If no such element exists in the sequence, then
FindClass returns ERROR.

FindClass :

[(1?W42IOrf+{(I Q .))}x TR"SAC~Tc AVUM Be]

[1UZA7TOg" CLASS + {ERROR}]

FindClass((u, v, w), tn) =

if (u 6 ( ) A tn <_ tn)

then if (tn 2 =-V tn < tn2 )

then y

else Find'Class(( Tail(u), v, w), tn)

else ERROR

where Head(u) = (y, tni, tn2).
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FindSignature maps a relation onto the signature component of the element in the relation's
signature sequence having the largest transaction-number component less than or
equal to a given transaction number, if FindClass does not return an error for the
same transaction number. If FindClase returns an error or no such element exists in
the sequence, then FindSignature returns ERROR.

FindSignature :

[ 7R&C-1AOf + {(), (, ())}] x T.AV'SA/ C PO. . tUMne ] -*

( R 7Cf.AT O1A" S"IQ'A 7UMC + {E ROR} ]

FindSignature((u, v, w), tn) =

if (FindClass((u, v, w), tn) • ERROR A V 9 () A ti < tn)

then if (Tail(v) = ( ) V (Tail(v) A ( ) A tn < tn 2 ))

then z,

else FindSignature((u, Tail(v), w), tn)

else ERROR

where Head(v) = (z1, tni) and lead(Tail(v)) = (z2, tn2).

FindState maps a relation onto the state component of the element in the relation's state
sequence having the largest transaction-number component less than or equal to a
given transaction number, if FindClasa does not return an error for the same transac-
tion number. If FindClaus returns an error or no such element exists in the sequence,
then FindState returns ERROR.

FindState :

[rLAzt1zo•N + {((), (), ())}] x 77,AA.SAC2T7oA Nu.•e•] -A

[ SMAPSN-OT S"A7T" + RIS7-9RICAL STA72' + {ERROR}]

FindState((u, v, w), tn) =

if (FindClass((u, v, w), tn) 9 ERROR A W # ( ) A tnj < tn)

then if (Tail(w) = ( ) V (Tail(w) • ( ) A tn < tn2))

then 1i

else FindState((u, v, Tail(w)), tn)

else ERROR

where Head(w) = (l1, tn1 ) and Head(Tail(w)) = (12, tn 2).

First takes a set of times from the domain P(T) and maps it onto the earliest time in the
set.
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First :P(T) - 7 [T + {ERROR} I

First(T) -

If T 60

then t, tETAVt, t'ET, tt'

else ERROR

Last takes a set of times from the domain P2(T) and maps it onto the latest time in the
set.

Last: •P(T)- T + {ERROR}]

Last(T) =

if TOO

then t, tETAVtW,t'ET,t>t'

else ERROR

LastClasa maps a relation onto the class component of the last element in the relation's
class sequence. If the sequence is empty, LastClass returns ERROR.

LastClasa :

[ IE?.T.42oW + { (( ), (, ()) } ] - [ 1• C NCASS + {ERROR}]

LastClass((u, v, w)) =

if (u # ( ) A Head(u) - (y, tnh, tn 2))

then if Tail(u) = ( )

then y

else Last Class(( Tail(u), v, w))

else ERROR

LastSignature maps a relation onto the signature component of the last element in the rela-
tion's signature sequence. If the relation's signature sequence is empty, LastSignature
returns ERROR.
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LaetSignature:

[RE( AI.zoW+{((), (+, ())}] -. [ECA7 zoAgs(I.A.u + {ERRoR) I

LaatSignature((u, v, w )) =

if (v () A Head(v) (z, tni))

then if Tail(v) = ( )

then z

else LastSignature(u, Tail(v), w)

else ERROR

LastSfate maps a relation onto the state component of the last element in the relation's
state sequence. If the relation's state sequence is empty, LastState returns ERROR.

LastState :
[ Z,6..AT7O.N" + ((,(,))}]-

[ SAAPS,7OT STATS + ZST7 =CAI STA" E + {ERROR}]

LaatState((u, v, w)) =

if (w # ( ) A Head(w) = (1, tni))

then if Tail(w) = ( )

then I

else LastState(u, v, Tail(w))

else ERROR

LastTrNumber maps a relation's class sequence onto the transaction number of the trans-
action that appended the last element to the sequence. If the relation's class sequence
is empty, Last TNumber returns ERROR.

Last TrNumber:

[RUe,,AT'oW CLASS x 77X.A(SACo. .N'UM SMr x

[77.AASACTZc." A'ZIMBC1 + {-} 11* .- "•.A/SACT'O .A'24M1eT
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Last TrNumber(u) =

If (u i( A Head(u) = (y, tn1 , tn 2 ))

then if Tail(t) = ( )

then tn1

else Last TrNumber( Tail(u))

else ERROR

Interval maps a set of times onto the set of intervals containing the minimum number of
non.disjoint intervals represented by the input set. Each time in the input set appears
in exactly one interval in the output set and each interval in the output set is itself
represented by a set of times.

Let the domain LV be the subset of 83(T) that represents all possible non-disjoint intervals
of time.

Z -A" {0} u (IN I IN r V(T) A IN 6 0 A Vt, First(IN) <_ t <5 Last(IN) -+ t E IN)

Note that LA includes the empty set and intervals of length 1. Also let PQ(ZAf) be the power
set of ZA/. While LV C P'(T), each element of •P(ZA) is a set, each of whose elements is
also an element of P(T).

Interval: P(T) -- P(Z/)

Interval(T) =

if T60

then {IAIVt, tE IN, tE T

A Fred(t) E T - Pred(t) E IN

A Succ(t) E T - Succ(t) E IN)

else {0}

MaintenanceStrategy maps an identifier that denotes a view in a database state onto the
maintenance strategy for the view. If the identifier does not denote a view, Mainte.
nanceStrategy returns ERROR. For this function's definition, assume that relations are
elements of the semantic domain 7lZ,6A7TO.N as defined on page 154.

MaintenanceStrategy :

[TMMTIC7Z17 x VATAHASC S"A7"] --

{UNMATERIALIZED, RECOMPUTED, INCREMENTAL, ERROR)
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MaintenanceStrategy(I, d) = if d(l) = (u1 , U12, 113, (E, UNMATERIALIZED))

then UNMATERIALIZED

else if d(I) = (ul, U2, U3, (E, RECOMPUTED))

then RECOMPUTED

else if d(I) = (u,, u2, U3, (E, INCREMENTAL))

then INCREMENTAL

else ERROR

M&oT maps a relation (u, v, w) and a transaction number tn onto the history of the
relation as a rollback or temporal relation before the start of transaction tn.

MSoT: [7Z[-I.ATZOA+{( (),+O)} ]x T"AArSAC7tO•AfMMBtZ] .- ,

MSoT((u, v, w), tn) =

if (u' = PreflxClasses(u, tn) A u' i (A) tn' = Last TrNumber(u'))

then if MultiStateClass(LastClase((u', v, w)))

theL (Close(u', tn - 1), PrefizSigs(v, tn), PrefizStates(w, tn))

else (PrefizClasses(u, tn'), PrefiaSigs(v, tn'), PrefitStates(w, tn'))
else Q ), ( ), ( ))

MultiStateClass is a boolean function that determines whether a class is either ROLLBACK

or TEMPORAL.

MultiStateClass: tA2IO.g/" CCASS -. {TRUE, FALSE)

MultiStateClass(y) = (Y = ROLLBACK V y = TEMPORAL)

NewSignature maps a relation's MSoT and a (signature, transaction number) pair onto the
empty sequence, if the signature in the last element of the relation's MSoT signature
sequence is equal to the signature in the (signature, transaction number) pair, or a
one-element sequence containing the (signature, transaction number) pair, otherwise.
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NewSignature:

-[7[•CA. OA( + {(x, (), ())}]x

[RCA 471OA STOMAU -M7 x 77ZAfSA•C7WK KUM B'Z]]C -

[7Z£EAT2OA SICKA2ZZ7E x TRMA(SAC7TZO A'AIMBrC ]*

NewSionature((u, v, w), (z, tn)) =

if LaetSignature((u, v, w)) = z

then ()

else ((z, tn))

NewState maps a relation's MSoT, a (relation state, transaction number) pair, and a (class,
signature) pair onto the empty sequence, if the class and signature in the last elements
of the relation's MSoT class and signature sequences are consistent with the (class,
signature) pair and the state in the last element of the relation's MSoT state sequence
is equal to the relation state in the (relation state, transaction number) pair, or a one-
element sequence containing the (relation state, transaction number) pair, otherwise.

NewState :
[ XCLAZOM + Q (,(, ) x

[ [(SAPS07oT S`TA74 + liST7VmIAZ STAT$] x T7AKSArS4CTIOAM AIUABN ]R x
[1?CA7ZOg CLZASS x 1ZECA2WK SZ9ArA2UR& ] ] --

[[SNAPS7"tOT STATWE + 7-tTl= = A , SWTEA ] x TMZIABSACTCTZ ]*

NewState((u, v, w), (1, tn), (y, z)) =

if (Consistent(LastClass((u, v, w)),

LaatSignature((u, v, w )), (iy, z))

A LautState((u, v, w)) = 1)

then ( )

else ((I, tn))

Pred is the predecessor function cn the domain T It maps a time onto its immediate
predecessor in the linear ordering of all times.

Pred: T - [ T + {RrtoR} ]



302

Pred(t) =

if t 0 First(t)

then tp, tp E TA tp < t A Vt', t' E TA t' < t, t' < tp

else ERROR

PrefixClasseo maps a relation's class sequence u and a transaction number tn onto the
subsequence recorded before the start of transaction tn.

PrefixClasses :

[R[U7CAUT2O CLZASS x T7YZAASAC2"OAr AVMB"R x
[27"A4 .SAC1A0 A.i.M B'RZ + {=} - ] * x 77CAWrSAC'O. A'..M B&1 ] -.

[R7CA71OA/" CLASS x '77¢AA(SACTIOA" AAUMBMT7 x

[277•.AASAC7W" .M•.Ms" + {-}]]*

PrefixClasses(u, tn) =

if (u 0 ( ) A Head(u) = (y, tn,, tn 2 ) A tn1 < tn)

then (Head(u)) 11 PrefxClasses( Tail(u), tn)

else ( )

Preflx$iga maps a relation's signature sequence v and a transaction number tn onto the
subsequence recorded before the start of transaction tn.

PrefixSige :

[ [ ztLA7To SIQA7AUflC x 77AMSAC0.rV AK•UMIC ]* x
TR.AAVSACIOAr AVM. BSR ] --

[ (R.CA7T0oM SIQOAr tt x 77MK4(SAC o.,Zv" A.(tUM R ]*

Pref$xSigs(v, tn) =

if (v # ( ) A Head(v) = (z, tn,) A tn, < tin)

then (Head(v)) 11 PrefizSigs( Tail(v), tn)

else ( )

PrefiwState. maps a relation's state sequence w and a transaction number tn onto the
subsequence recorded before the start of transaction in.
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Prefl$State:

[(71&CAT0A STAE x 77?4Sr3C2710 AIUM HR I* x
7R"S4AC~7X0g AlUM 8E7] -~

[ [SAPs1-OT STAfl + $T=RoZCAI STA7T] x

Prefiztates(w, tn) =

if (W $ () A Head(w) = (1, tn i ) A tnI < tn)

then (Htead(w)) 11 PrefizStates(Tail(w), tn)

else ()

SinlgeStateClau is a boolean function that determines whether a class is either SNAPSHOT

or HISTORICAL.

SingleStateClass: 1IMzA7TOA" CCASS {TfRUE, FALSE)

Sin gleStateClaas(y) = (y = SNAPSHOT V y = ROLLBACK)

Succ is the successor function on the domain T It maps a time onto its immediate successor
In the linear ordering of all times.

Pred: T --- T

Succ(t) = ts, ts E T A ts > t A Vt', t' E T A t' > t, t' > ts

UpdateState maps a relation state, differential, and relation class onto the relation state
that the input relation state and differential denote. If the class is other than snapshot
or historical, UpdateState returns ERROR.
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UpdateState:

([[NATpSmOT STATE x SArApSnOT V.FnRt1•CAfA x

1Rt 4 A770MCCA4SS +
[1%Zs7"m.CAC STATc E x nx7.s7mCAi. *DIF• AI•Y.N7Ac x

R2ECA710A CC4SS]]-

[$SAAPSI" S7'7ATE + hLKZWRTCA£C STATt + {ERR•R)}

UpdateState(l, A, y) = if y = SNAPSHOT

then S.Update(l, A)

else if y = HISTORICAL

then H.Update(l, A)

else ERROR

Valid maps an attribute's value in a historical tuple (i.e., a (value, valid) pair) onto its
valid-time component.

Valid : [ D) x (7")] - (T)

Valid((d, T)) = T

Value maps an attribute's value in a historical tuple (i.e., a (value, valid) pair) onto its
value component.

Value: [ D x (")] .--+ D

Value((d, T)) = d

View determines whether an identifier denotes a view, either unmaterialized or materi-
alized, in a database state. For this function's definition, assume that relations are
elements of the semantic domain 7R£.A712OA/ as defined on page 154.

View.T
[TMA.N'llne£R x VATA8ASe STATE ] TRUE, FALSE}
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View(I, d) =

d(I) = (U¶, U2, U3 , (E, UNMATERIALIZED))

V d(I) = (ul, U2, 4•3, (-E, RECOMPUTED))

V d(l) = (ul, u2 , u3, (E, INCREMENTAL))

ViewDef maps an identifier that denotes a view in a database state onto the expression that
defines the view. If the identifier does not denote a view, ViewDef returns ERROR. For
this function's definition, assume that relations are elements of the semantic domain
I•UIAMAIO(f as defineJ on page 154.

ViewDef :

( TDaCAM71.V'f x VATABASC A7t] -* [ tA,7PWSS WA! + {ERROR} ]

ViewDef(I, d) = if (d(l) = (Ul, U2 , U3, (E, UNMATERIALIZED))

V d(I) - (ul, U2 , U3 , (E, RECOMPUTED))

v d(l) = (Ul, u2, U3, (E, INCREMENTAL)))

then E

else ERROR

Views maps an identifier onto the set of identifiers denoting views that depend, either
directly or indirectly, on the relation denoted by the identifier in a database state. For
this function's definition, assume that relations are elements of the semantic domain

E£CA7ZO.Af as defined on page 154.

Views :

[ zTD-C"21n. x DVA.TASA5t6 STATI -7 (W•CA"2neRY6 )

Views(l, d) = {I" 3F', (V' E WCOM.MV'l

A (d(I') = (ue, u2, 1U3, (E, UNMATERIALIZED))

v d(') = (ul, U2, U3, (E, RECOMPUTED))

v d(1) = (ul, U2, U3, (E, INCREMENTAL)))

A I E REE] A (I" = I' V I" E Views(I, d)}



Appendix C

Language Syntax

This appendix describes the syntax of the algebraic language for database query and update
defined in Chapters 3 and 4. A variant of Backus-Naur Form (BNF) is used to specify the
syntax. Nonterminal symbols appear in italics, delimited by "( ) ," and terminal symbols
appear In a typevriter typeface. In addition to the standard BNF meta-symbols, we
use "( }" to enclose sequences of symbols occurring zero or more times in succession. An
(expression) appears within a command and evaluates to a single snapshot or historical
state. A (sigma expression) is a boolean expression that appears as the parameter of
the selection operator. A (delta expression) and a (time expression) are respectively a
boolean expression and a temporal expression; both appear as parameters of the historical
operator 6. Such expressions are discussed in detail in Chapter 3.

C.1 Syntax

Shown here is the syntax for the basic language without any of the extensions discussed in
Chapter 3.

(program) begin.transaction (command) commit. transact ion

I bogin.-transaction (command) abort -.transaction

I (program) ; (program)

(command) ::= def in.relation( (relation name), (clasa) , (signature))

I modif y.-r.lation( (relation name) , (clasorutar),

(signatureorstar) , (expression))

I destroy( (relation name))

I rename.relation( (relation name) , (relation name))

I (command) , (command)
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(ezpreaion) ::i-_ [snapshot, (signature) , (8-etate)3

[historical, (signature) , (h-state))

(relation name)

(expression) U (expression)

(expresion) - (ezpression)

(expression) x (expression)

7, (identifier list) ((expression))

or (sigma expression) ((expression))

p ( (relation name) , ('ime constant))

(expression) (expression)

(•xpression) (expression)

(expression) ; (expression)

* (identifier ist) ((expression) 'I

& (sigma expression) ( (expression))

I (delta expression) , (time list) ( (expression))

A (agg parameters) ((expression) , (expression))
At? (agg parameters) ( (expression) , (expression)

I ( (relation name), (time constant))

((expression))

(signatureorstart) (signature) I *

(signature) ::= ((attribute raame) : (domain name)

{, (attribute name) : (domain name) } )

(s-8tate) e: i (s-tuple) f{, (.-tuple) }

(s-tuple) ::= ((attribute name) : (string) {, (attribute name): (string) } )

(h-etate) ::= eI (h-tuple) {, (h-tuple) }

(h-tuple) ((atiribute name): (string) e (time set)

{, (attribute name) : (string)@ (time set) } )
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(identifier list) ::= ( ) ((identifier) {, (idenifer) } )

(sigma expression) ::- (sigma term)

(sigma exp.ession) and (sigma expression)

(sigma expression) or (sigma expression)

not (sigma expression)

( (sigma expression) )

(sigma term) (sigma factor) (rel op) (sigma factor)

(sigma factor) ::- (attribute name) I (string)

(rel op) :: I a1"1>

(delta expression) true I faie

(delta term)

(delta expression) and (delta expression)

(delta expression) or (delta expression)

not (delta expression)

( (delta expression) )

(delta term) (delta factor) (rel op) (delta factor)

I (time expression) - (time expression)

(delta factor) (time constant)

I FIRST( (time expression))

I LAST( (time expression) )

(time list) ((attribute name) :- (time expression)

{, (attribute name):" (time expression) } )

(tih ie expression) (attribute name)

I (time set)

I EXTEND( (delta factor), (delta factor))
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I (time expression) (set op) (time expression)

I ((time expression) )

(time aet) ::= all I { (time sequence) }

(time sequence) ::= I (time constant) f, (time constant) }

(agg parameters) (scalar aggregate) , (window function),

(attribute name) . (attribute name), (by list)

(scalar aggregate) (identifier)

(window function) infinity j •numeral) I (identifier)

(by liat) ( ) I((identifier) {. (identifier)} )

(set op) u ln -

(ciassoratar) (class)l,

(class) ::= snapshot I historical I rollback temporal

(relation name) (identifier)

(attribute name) (identifier)

(domain name) (identifier)

(identifier) (letter) f (letter) I (digit)

(string) (any character other than ")

{ (any character other than ")}"

(letter) ajbjcjde f.IIg hji:j jkilim

MEW__
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I nlolplqjzrlsl~ulvjvIxjylz
I AIBICIDIEIFIlIHIIIJIKILIN
I NIOIPIQIRISITIUIVJWIXIYIZ

(time constant) (numeral)

(numeral) (nonzero digit) I (digit)

(digit) 0 1 (nonzero digit)

(nonzero digit) 112131416161?1819

C.2 Extensions

Shown here is the additional syntax needed for the extensions to the language discussed in
Sections 3.3.5, 3.4.4, and 3.6. No syntax for the category (value expression) or (aggregate
expression) is given as these categories may be defined arbitrarily depending on the value
domains allowed and the functions on those domains supported.

(expression) = (expression) n (expression)

(expression) (sigma expression) T( expreusion)

(expression) m (expression)

(expression) + (expression)

p ( (relaton name) , (time constant) , (time constant))

(expression) o (expression)

(expression) (sigma expression) t (expression)

(expression) k (expression)

(expression) -- (expression)

( ( (relation name) , (time constant) , (time constant))

(identifier list) I ((attribute name) := ( (value expression) 0 (time expression) )

{,(attribute name) :=

((value expression) Q(time expression) )})

(agg parameters) = (scalar aggregate) , (window function) , (attribute name),

(attribute name) , (by list) , (value expression)
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{,(value expression)}

((scalar aggregate), (window function) ,

(attribute name), (by list))

{, ( (scalar aggregate) , (window function).

(attribute name) , (by list) )}

(attribute name) , 'aggregate expression)



Index

This is an index to the definitions of terms and notation used in the paper. As stated in
Section 1.6, elements of syntactic categories appear in fixed-width, semantic functions
appear in boldface, and all other functions appear in Italics with at least the first letter
capitalized.

Afterimage, 149 class, 7, 60
aggregate Close, 293

cumulative, 37 Coalesced, 101
functions, 36 command, 57, 77, 153, 158
Instantaneous, 37 concurrency control
non-unique, 40, 45, 71, 76 scheduler, 200
partitioning function, 38 transaction manager, 200
scalar, 36 Consistent, 77, 294
unique, 43, 46, 71, 76 Counting, 114
window function, 37

aggregates database, 3, 62
non-unique, 153 state, 62
unique, 153 empty, 91

attribute, 24 doftineincrz ental.view, 160
deftireo.recomputed.-view, 160

B, 72, 277 define.relation, 80, 161
base relation, 132 deftine.viev, 159
BaseRelation, 159, 293 destroy, 86, 164
Beforelmage, 149 difference

historical, 27, 44, 69, 75
C, 77, 158 incremental

deftine.incremental.view, 160 historical, 151
define.recomputed.view, 160 snapshot, 142
dofine-relation, 80, 161 snapshot, 67, 74
deftine.view, 159 differential, 135
destroy, 86, 164 historical, 143
moditfy.relation, 83, 162 snapshot, 138
rename.relatior, 87, 165 domain

cach? manager, 200 time, 24
cartesian product value, 24

historical, 28, 45, 70, 75
incremental E, 72, 155

historical, 152 historical operators
snapshot, 143 cartesian product, 75

snapshot, 68, 74 derivation, 76
chronon, 3 difference, 75
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non-uuique aggregation, 76 intersection, 46
projection, 76 natural join, 47
rollback, 76 non-unique aggregation, 40, 45, 71, 76
selection, 76 projection, 30, 45, 70, 76
union, 75 quotient, 48
unique aggregation, 76 rollback, 71, 76

identifier, 73, 155 selection, 29, 45, 70, 76
snapshot operators 0-join, 47

cartesian product, 74 union, 26, 44, 69
difference, 74 unique aggregation, 43, 46, 71, 76
projection, 74 HProduct, 152
rollback, 74 HTUPLE, 281
selection, 74 HUnion, 150
union, 74 H.Update, 145

state
historical, 73 identifier, 67, 73, 155, 158
snapshot, 73 incremental operators

E', 157 historical operators
identifier, 158 cartesian product, 152
snapshot derivation, 148

rollback, 158 difference, 151
state, 157 non-unique aggregation, 153
union, 158 projection, 149

evolution selection, 148
contents, 52 union, 150
scheme, 52 unique aggregaton, 153

Expand, 78, 294 snapshot operators
expression, 57, 71, 155 cartesian product, 143
Extend, 295 difference, 142

projection, 141
F, 72, 278 selection, 141
FindClass, 65, 295 union, 142
FindSignature, 65, 296 intersection
FindState, 72, 296 historical, 46
Firatvalue, 114 snapshot, 46
First, 296 interval, 3
FT, 278 Interval, 299

G, 72, 279 LastClass, 65, 297
GF, 280 LastSignature, 65, 297
GT, 280 LastState, 73, 298

Last TrNumber , 298
H, 64, 280 Last, 297

HDifference, 151

H..Differential, 144 MaintenanceStrategy, 159, 299
historical derivation, 34, 45, 70, 76 modify.relation, 83, 162

incremental, 148 MSoT, 77, 300
historical operators MultiState Class, 300

cartesian prodnct, 28, 45, 70, 75
derivation, 34, 45, 70, 76 N, 64, 281
difference, 27, 44, 69, 75 natural join
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historical, 47 snapshot, 68, 74
snapshot, 47 signature, 24, 60

NewSignature, 78, 300 SingleStateCla.., 303
NewState, 78, 301 Smallest, 116

snapshot operators
Orderlnt, 115 cartesian product, 68, 74

"P, 90 difference, 67, 74
Position, 15 intersection, 46
Poaition, 115 natural join, 47
Pried, 301 projection, 68, 74
PrefiiClagse, 302 quotient, 48
PrefixSige, 302 rollback, 69, 74, 158
Pr'eflzStateu, 302 selection, 68, 74

program, 56, 90 s-lein, 46

projection union, 67, 74, 158

historical, 30, 45, 70, 76 snapshots, 136

incremental s o, 2 3

historical, 149 SO, 283

snapshot, 141 state, 24
snapshot, 68, 74 database, 62

historical, 60, 66, 73

query, 7 snapshot, 60, 66, 73, 157

quotient STUPLE, 283

historical, 48 Succ, 303

snapshot, 48 S.Update, 139

R, 159, 282 T, 64, 154

recovery historical operators

cache manager, 200 cartesian product, 70

recovery manager, 200 derivation, 70

recovery manager, 200 difference, 69

relation, 61, 154 non-unique aggregation, 71

historical, 5, 23 projection, 70

rollback, 5 rollback, 71

snapshot, 5 selection, 70
temporal, 5 union, 69

rename.relation, 87, 165 unique aggregation, 71

rollback identifier, 67, 155

historical, 71, 76 snapshot operators

snapshot, 69, 74, 158 cartesian product, 68

RO, 282 difference, 67
projection, 68

S, 64, 283 rollback, 69
scheduler, 200 selection, 68
scheme, 3, 23, 52 union, 67
S.Differential, 138 state
selection historical, 66

historical, 29, 45, 70, 76 snapshot, 66
incremental TE, 284

historical, 148 O-join
snapshot, 141 historical, 47
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snapshot, 46 Valid, 304
time value equivaikence. 24, 44

continuous, 3 Value, 304
discrete, 3 VECounterpar". 146
transaction, 4 view,.132
user-defined, 4 definition, 13.2, 168
valid, 4 materialized, 134

TQuel, 16 deferred, 134
append, 126 immediate, 134
create, 125 incremental, 134
delete, 127 recomputed, 134
prototype unmaterialized, 134

code generator, 180 in-line, 134
interpreter, 182 query modiflcat.on, 134

replace, 128, 129 View, 159, 304
retrieve, 104 ViewDef, 159, 305
transformation function, 101 Views, 159, 305

transaction manger, 200
transaction number, 60 W, 72, 290
TS, 285 X, 65, 290tuple, 24
type system, 63, 154 Y, 65, 290

Unchanged, 147 Y1, 77, 291
union Z, 65, 291

historical, 26, 44, 69, 75 z', 77, 292
incremental

historical, 150
snapshot, 142

snapshot, 67, 74, 158
update network

database, 177
view, 169

UpdateStwe, 159, 303
Update Vw., 163

V, 72, 286
VALIDB, 64, 286
VALIDFT, 287
VALIDF, 64, 286
VALIDGF, 287
VALIDGT, 288
VALXDG, 64, 287
VALIDTE, 288
VALIDV, 65
VALIDV, 288
VALIDW, 65
VALIDW, 289
VALDX, 65
VALXDX, 289


